Difference between revisions of "TF ErrorAna PropOfErr"

From New IAC Wiki
Jump to navigation Jump to search
Line 2: Line 2:
  
  
<math>\sigma</math> of the mean
+
 
  
 
Example of cosmic counting experiments.  Is the variation statistical?
 
Example of cosmic counting experiments.  Is the variation statistical?
 +
 +
<math>\sigma^2_{Poisson} = \mu =</math> Mean Coinc/Hr
  
 
{| border="5"
 
{| border="5"
Line 32: Line 34:
 
<math>\frac{sum (x_i-\mu)^2}{8-1} = 10.8</math>
 
<math>\frac{sum (x_i-\mu)^2}{8-1} = 10.8</math>
  
P=68% = Probability that  a measurement of a Gaussian variant will lie within 1  
+
P=68% = Probability that  a measurement of a Gaussian variant will lie within 1 <math>\sigma</math> of the mean
 
: <math>= 0.68 * 8 = 5</math>
 
: <math>= 0.68 * 8 = 5</math>
  

Revision as of 04:05, 1 March 2010

Instrumental and Statistical Uncertainties

Example of cosmic counting experiments. Is the variation statistical?

σ2Poisson=μ= Mean Coinc/Hr

Date Time (hrs) θ Coincidence Counts Mean Coinc/Hr MeanCounts/Hr |σ| from Mean
9/12/07 20.5 330 2233 109 10.4 1
9/14/07 21 330 1582 75 8.7 2
10/3/07 21 330 2282 100 10.4 1
10/4/07 21 330 2029 97 9.8 0.1
10/15/07 21 330 2180 100 10 0.6
10/18/07 21 330 2064 99 9.9 0.1
10/23/07 21 330 2003 95 9.7 0.2
10/26/07 21 330 1943 93 9.6 0.5

CPMi8=97.44

Countstime=16316167.5=97.41

sum(xiμ)281=10.8

P=68% = Probability that a measurement of a Gaussian variant will lie within 1 σ of the mean

=0.688=5

Looks like we have 7/8 events within 1σ = 87.5%

Taylor Expansion

A quantity which is calculated using quantities with known uncertainties will have an uncertainty based upon the uncertainty of the quantities used in the calculation.

To determine the uncertainty in a quantity which is a function of other quantities, you can consider the dependence of these quantities in terms of a tayler expansion

Consider a calculation of a Table's Area

A=L×W

The mean that the Area (A) is a function of the Length (L) and the Width (W) of the table.

A=f(L,W)


The Taylor series expansion of a function f(x) about the point a is given as

f(x)=f(a)+f(x)|x=ax1!+f(x)|x=ax22!+...

=n=0f(n)(x)|x=axnn!


For small values of x (x << 1) we can expand the function about 0 such that

1+x=1012(1+x)1/2|x=0x11!+1212(1+x)3/2|x=0x22!

=1+x2x24


The talylor expansion of a function with two variables(x1,x2) about the average of the two variables(¯x1,¯x2) is given by

f(x1,x2)=f(ˉx1,ˉx2)+(x1ˉx1)fx1|(x1=ˉx1,x2=ˉx2)+(x2ˉx2)fx2|(x1=ˉx1,x2=ˉx2)

or

f(x1,x2)f(ˉx1,ˉx2)=(x1ˉx1)fx1|(x1=ˉx1,x2=ˉx2)+(x2ˉx2)fx2|(x1=ˉx1,x2=ˉx2)

The term

f(x1,x2)f(ˉx1,ˉx2)

represents a small fluctuation of the function from its average f(ˉx1,ˉx2) if we ignore higher order terms in the Taylor expansion ( this means the fluctuations are small).

Based on the Definition of Variance

σ2=i=Ni=1(xiˉx)2N


We can write the variance of the area

σ2A=i=Ni=1(AiˉA)2N
=i=Ni=1[(LˉL)AL|ˉLˉW+(WˉW)AW|ˉLˉWW]2N


=i=Ni=1[(LˉL)AL|ˉLˉW]2N+i=Ni=1[(WˉW)AW|ˉLˉW]2N
+2i=Ni=1[(LˉL)(WˉW)AL|ˉLˉWAW|ˉLˉW]2N
=σ2L(AL)2+σ2W(AW)2+2σ2LWALAW

where σ2LW=i=Ni=1[(LˉL)(WˉW)]2N is defined as the Covariance between L and W.

Weighted Mean and variance

If each observable (xi) is accompanied by an estimate of the uncertainty in that observable (δxi) then weighted mean is defined as

ˉx=i=ni=1xiδxii=ni=11δxi

The variance of the distribution is defined as

ˉx=i=ni=11δxi



Date Time (hrs) θ Coincidence Counts Coinc/Hour N
9/6/07 18 45 1065 59.2
9/7/07 14.66 45 881 60.1
9/9/07 43 60 1558 36.23
9/12/07 20.5 330 2233 108.93
9/13/07 21 315 2261 107.67
9/14/07 21 330 1582 75.33
9/18/07 21 300 1108 52.8
9/19/07 21 300 1210 57.62
9/20/07 21 300 1111 52.69
9/21/07 21 300 1012 57.62
9/26/07 21 315 1669 79.48
9/27/07 21 315 1756 83.29
9/29/07 24.5 315 2334 95.27
10/3/07 21 330 2282 108.67
10/4/07 21 330 2029 96.62
10/10/07 21 315 1947 92.71
10/15/07 69 330 2180 31.59
10/18/07 21 330 2064 98.52
10/23/07 21 330 2003 95.38
10/26/07 21 330 1943 92.52
11/2/07 21 330 2784
11/5/07 69 330 10251 148.57
11/16/07 21 30 3581 170.52

[1] Forest_Error_Analysis_for_the_Physical_Sciences