Difference between revisions of "TF ErrorAna PropOfErr"
Jump to navigation
Jump to search
Line 24: | Line 24: | ||
− | <math>f(x_1, x_2)=f({x_o}_1, {x_o}_2)+(x_1-{x_o}_1) \frac{\partial f}{\partial x_1}\bigg |_{(x_1 = x_{01}, x_2 = x_{02})}</math> | + | <math>f(x_1, x_2)=f({x_o}_1, {x_o}_2)+(x_1-{x_o}_1) \frac{\partial f}{\partial x_1}\bigg |_{(x_1 = x_{01}, x_2 = x_{02})} +(x_2-{x_o}_2) \frac{\partial f}{\partial x_2}\bigg |_{(x_1 = x_{01}, x_2 = x_{02})}</math> |
<math>f(x_1, x_2)=f({x_o}_1, {x_o}_2)+(x_1-{x_o}_1) \frac{\partial f}{\partial x_1}|_{x_1=x_o_1 ,x_2=x_o_2}}+(x_2-{x_o}_2) \left \frac{\partial f}{\partial x_2 \right |_{(x_1=x_o_1 , x_2=x_o_2})}</math> | <math>f(x_1, x_2)=f({x_o}_1, {x_o}_2)+(x_1-{x_o}_1) \frac{\partial f}{\partial x_1}|_{x_1=x_o_1 ,x_2=x_o_2}}+(x_2-{x_o}_2) \left \frac{\partial f}{\partial x_2 \right |_{(x_1=x_o_1 , x_2=x_o_2})}</math> | ||
<math>f(x_1, x_2) – f({x_o}_1, {x_o}_2) = (x_1-{x_o}_1) \frac{\partial f}{\partial x_1}\Big\lvert_{\substack {x_1={x_o}_1 \\ x_2={x_o}_2}}+(x_2-{x_o}_2) \frac{\partial f}{\partial x_2}\Big\lvert_{\substack {x_1={x_o}_1 x_2={x_o}_2}}</math> | <math>f(x_1, x_2) – f({x_o}_1, {x_o}_2) = (x_1-{x_o}_1) \frac{\partial f}{\partial x_1}\Big\lvert_{\substack {x_1={x_o}_1 \\ x_2={x_o}_2}}+(x_2-{x_o}_2) \frac{\partial f}{\partial x_2}\Big\lvert_{\substack {x_1={x_o}_1 x_2={x_o}_2}}</math> |
Revision as of 20:26, 9 January 2010
A quantity which is calculated using quantities with known uncertainties will have an uncertainty based upon the uncertainty of the quantities used in the calculation.
To determine the uncertainty in a quantity which is a function of other quantities, you can consider the dependence of these quantities in terms of a tayler expansion
Consider a calculation of a Table's Area
The mean that the Area (A) is a function of the Length (L) and the Width (W) of the table.
The Taylor series expansion of a function f(x) about the point a is given as
For small values of x (x << 1) we can expand the function about 0 such that