Difference between revisions of "TF ErrorAna PropOfErr"

From New IAC Wiki
Jump to navigation Jump to search
Line 24: Line 24:
  
  
<math>f(x_1, x_2)=f({x_o}_1, {x_o}_2)+(x_1-{x_o}_1) \frac{\partial f}{\partial x_1}|{x_1 = x_{01}, x_2 = x_{02}}</math>
+
<math>f(x_1, x_2)=f({x_o}_1, {x_o}_2)+(x_1-{x_o}_1) \left \| \frac{\partial f}{\partial x_1}\right|{(x_1 = x_{01}, x_2 = x_{02})}</math>
  
 
<math>f(x_1, x_2)=f({x_o}_1, {x_o}_2)+(x_1-{x_o}_1) \frac{\partial f}{\partial x_1}|_{x_1=x_o_1 ,x_2=x_o_2}}+(x_2-{x_o}_2) \left \| \frac{\partial f}{\partial x_2 \right |_{(x_1=x_o_1 , x_2=x_o_2})}</math>
 
<math>f(x_1, x_2)=f({x_o}_1, {x_o}_2)+(x_1-{x_o}_1) \frac{\partial f}{\partial x_1}|_{x_1=x_o_1 ,x_2=x_o_2}}+(x_2-{x_o}_2) \left \| \frac{\partial f}{\partial x_2 \right |_{(x_1=x_o_1 , x_2=x_o_2})}</math>
  
 
<math>f(x_1, x_2) – f({x_o}_1, {x_o}_2) = (x_1-{x_o}_1) \frac{\partial f}{\partial x_1}\Big\lvert_{\substack {x_1={x_o}_1 \\ x_2={x_o}_2}}+(x_2-{x_o}_2) \frac{\partial f}{\partial x_2}\Big\lvert_{\substack {x_1={x_o}_1 x_2={x_o}_2}}</math>
 
<math>f(x_1, x_2) – f({x_o}_1, {x_o}_2) = (x_1-{x_o}_1) \frac{\partial f}{\partial x_1}\Big\lvert_{\substack {x_1={x_o}_1 \\ x_2={x_o}_2}}+(x_2-{x_o}_2) \frac{\partial f}{\partial x_2}\Big\lvert_{\substack {x_1={x_o}_1 x_2={x_o}_2}}</math>

Revision as of 20:22, 9 January 2010

A quantity which is calculated using quantities with known uncertainties will have an uncertainty based upon the uncertainty of the quantities used in the calculation.

To determine the uncertainty in a quantity which is a function of other quantities, you can consider the dependence of these quantities in terms of a tayler expansion

Consider a calculation of a Table's Area

A=L×W

The mean that the Area (A) is a function of the Length (L) and the Width (W) of the table.

A=f(L,W)


The Taylor series expansion of a function f(x) about the point a is given as

f(x)=f(a)+f(x)|x=ax1!+f(x)|x=ax22!+...

=inftyn=0f(n)(x)|x=axnn!


For small values of x (x << 1) we can expand the function about 0 such that

1+x=10|12(1+x)1/2|x=0x11!+1212(1+x)3/2|x=0x22!

=1+x2x24


f(x1,x2)=f(xo1,xo2)+(x1xo1)