Difference between revisions of "Forest AngMomRecoupling"
Jump to navigation
Jump to search
Line 9: | Line 9: | ||
<math>C^{1,\;\;\frac{1}{2},\frac{3}{2}}_{1,-\frac{1}{2},\frac{1}{2}}= \frac{1}{\sqrt{3}}</math> | <math>C^{1,\;\;\frac{1}{2},\frac{3}{2}}_{1,-\frac{1}{2},\frac{1}{2}}= \frac{1}{\sqrt{3}}</math> | ||
+ | |||
+ | |||
+ | <math>\sigma \prop |M_{if}|^2</math> | ||
+ | |||
+ | <math>M_{fi} = <\Psi_f | H_{int} | \Psi_i></math> | ||
+ | |||
+ | <math>A = \frac{\sigma_{\frac{1}{2} - \sigma_{\frac{3}{2}}{\sigma_{\frac{1}{2} + \sigma_{\frac{3}{2}}</math> |
Revision as of 22:41, 8 January 2010
The recoupling of two subsystems
with angular momenta and to a new system with total angular momentum is written as
: Clebsch-Gordon Coefficient