Difference between revisions of "Forest AngMomRecoupling"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
 
The recoupling of two subsystems <math>\psi</math> with angular momenta <math>j_1</math> and <math>j_2</math> to a new system<math> \Psi</math> with total angular momentum <math>J</math> is written as
 
The recoupling of two subsystems <math>\psi</math> with angular momenta <math>j_1</math> and <math>j_2</math> to a new system<math> \Psi</math> with total angular momentum <math>J</math> is written as
  
Line 6: Line 5:
  
 
<math>C^{j_1,j_2,J}_{m_1,m_2,M}</math> : Clebsch-Gordon Coefficient
 
<math>C^{j_1,j_2,J}_{m_1,m_2,M}</math> : Clebsch-Gordon Coefficient
 +
 +
<math>C^{1,1/2,3/2}_{1,1/2,3/2}=1</math>
 +
 +
<math>C^{1,1/2,3/2}_{1,-1/2,1/2}= \frac{1}{\sqrt{3}}</math>

Revision as of 22:36, 8 January 2010

The recoupling of two subsystems [math]\psi[/math] with angular momenta [math]j_1[/math] and [math]j_2[/math] to a new system[math] \Psi[/math] with total angular momentum [math]J[/math] is written as

[math]\Psi^{J}_{M} = \sum_{m_1,m_2} C^{j_1,j_2,J}_{m_1,m_2,M} \psi^{j_1}_{m_1} \psi^{j_2}_{m_2}[/math]


[math]C^{j_1,j_2,J}_{m_1,m_2,M}[/math] : Clebsch-Gordon Coefficient

[math]C^{1,1/2,3/2}_{1,1/2,3/2}=1[/math]

[math]C^{1,1/2,3/2}_{1,-1/2,1/2}= \frac{1}{\sqrt{3}}[/math]