Difference between revisions of "TF DerivationOfCoulombForce"
Jump to navigation
Jump to search
| Line 16: | Line 16: | ||
:<math>\int \vec{\nabla} \cdot ( e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi ) dV = \oint_S e^{-i \vec{k}\cdot \vec{\xi}} \vec{\nabla}\cdot d\vec{A}</math> | :<math>\int \vec{\nabla} \cdot ( e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi ) dV = \oint_S e^{-i \vec{k}\cdot \vec{\xi}} \vec{\nabla}\cdot d\vec{A}</math> | ||
| + | |||
| + | Definition of derivative: | ||
:<math>(\vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}}) \cdot (\vec{\nabla} \phi ) = \vec{\nabla} \cdot (\phi \vec{\nabla} e^{-i \vec{k}}) - \phi {\nabla}^2 e^{-i \vec{k} \cdot \vec{\xi}}</math> | :<math>(\vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}}) \cdot (\vec{\nabla} \phi ) = \vec{\nabla} \cdot (\phi \vec{\nabla} e^{-i \vec{k}}) - \phi {\nabla}^2 e^{-i \vec{k} \cdot \vec{\xi}}</math> | ||
| + | |||
| + | |||
| + | Substituting | ||
| + | <math>\frac{1}{(2 \pi)^{3/2} </math> | ||
Revision as of 03:22, 23 February 2009
- Poisson's Equation
Fourier Transform of Poisson's Equation
Product rule for dervatives
Gauss' Theorem:
Definition of derivative:
Substituting