Difference between revisions of "TF DerivationOfCoulombForce"

From New IAC Wiki
Jump to navigation Jump to search
Line 15: Line 15:
  
 
:<math>\int \vec{\nabla} \cdot ( e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi ) dV = \oint_S  e^{-i \vec{k}\cdot \vec{\xi}} \vec{\nabla}\cdot d\vec{A}</math>
 
:<math>\int \vec{\nabla} \cdot ( e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi ) dV = \oint_S  e^{-i \vec{k}\cdot \vec{\xi}} \vec{\nabla}\cdot d\vec{A}</math>
 +
 +
 +
:<math>(\vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}) \cdot (\vec{\nabla} \phi )) = \vec{\nabla}  \cdot (\phi \vec{\nabla} e^{-i \vec{k}) - \phi {\nabla}^2  e^{-i \vec{k}</math>

Revision as of 03:16, 23 February 2009

Poisson's Equation
2ϕ(ξ)=ρϵ0=eϵ0δ(ξ)

Fourier Transform of Poisson's Equation

1(2π)3/2eikξ2ϕ(ξ)dV=1(2π)3/2eϵ0eikξδ(ξ)dV
1(2π)3/2eikξ(ϕ(ξ))dV=e(2π)3/2ϵ0(1)

Product rule for dervatives

1(2π)3/2{(eikξϕ)(eikξ)(ϕ)}dV=e(2π)3/2ϵ0(1)


Gauss' Theorem:

(eikξϕ)dV=SeikξdA


(\vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}) \cdot (\vec{\nabla} \phi )) = \vec{\nabla}  \cdot (\phi \vec{\nabla} e^{-i \vec{k}) - \phi {\nabla}^2  e^{-i \vec{k}