Difference between revisions of "Plastic Scintillator Calculation"
Line 42: | Line 42: | ||
Doing the same calculations using the Bicron BC 408 PVT with anthracene [http://webh09.cern.ch/ajbell/Documents/Optical_Fibres/BICRON%20BC408.pdf] for the material yields a probability of <math>0.5294%</math> | Doing the same calculations using the Bicron BC 408 PVT with anthracene [http://webh09.cern.ch/ajbell/Documents/Optical_Fibres/BICRON%20BC408.pdf] for the material yields a probability of <math>0.5294%</math> | ||
+ | |||
+ | = A different way to calculate probability of interaction = | ||
[http://wiki.iac.isu.edu/index.php/PhotoFission_with_Polarized_Photons_from_HRRL Go Back] | [http://wiki.iac.isu.edu/index.php/PhotoFission_with_Polarized_Photons_from_HRRL Go Back] |
Revision as of 05:37, 5 February 2009
Below is the calculations done to determine the probability of pair production depending on thickness of the scintillator.
Molecules per
(NOTE: is just the density of the scintillator material and N[A] is Avogadro's number)Molecules per
Weighted cross-section
Probability of interaction (%)
All cross sections listed here are pair production cross-sections
For carbon
orFor carbon
orFor hydrogen
orFor hydrogen
orAvogadro's number
Molecular formula for PVT
Density of polyvinyl toluene (a common scintillator material) [1])
(NOTE: this value is from Rexon RP 200or is it [2] (TF)H/C = 11/10
For the sample calculation the thickness will be set to 1 cm just to get probability per cm
So entering all the numbers into the 4 initial equations gives the following answers:
Molecules per
Molecules per
Weighted cross-section
Probability of interaction (%)
Doing the same calculations using the Bicron BC 408 PVT with anthracene [3] for the material yields a probability of