Difference between revisions of "Notes from July 2nd, 2008 Meeting"
Jump to navigation
Jump to search
Line 24: | Line 24: | ||
fractional solid angle = <math>\frac{\pi * (1 cm)^{2}}{4 \pi (100cm^{2}} = \frac{1}{4} \times 10^{-4}</math> <= geometrical acceptance | fractional solid angle = <math>\frac{\pi * (1 cm)^{2}}{4 \pi (100cm^{2}} = \frac{1}{4} \times 10^{-4}</math> <= geometrical acceptance | ||
− | + | 10° efficient of n° detection | |
<math> 10^{4} \frac{photodisintegrations}{sec} \times \frac{1}{4} \cdot 10^{-4} \times 10^{-1} = .025 \frac{events}{sec}</math> | <math> 10^{4} \frac{photodisintegrations}{sec} \times \frac{1}{4} \cdot 10^{-4} \times 10^{-1} = .025 \frac{events}{sec}</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
time for <math>10^{4}</math> events = 100 hours for 1% | time for <math>10^{4}</math> events = 100 hours for 1% |
Revision as of 14:11, 3 July 2008
Numbers for rate of Brems intensity spectrum:
=
Number of ɣ + d -> n + p events/sec
Probability of Photodisintegration Event
target thickness in
Worst Case Isotropic Neutrons
Let's say we have:
radius detector = 1 cm
1 meter away
fractional solid angle =
<= geometrical acceptance10° efficient of n° detection
time for
events = 100 hours for 1%- 24 hours for 2%
- 6 hours for 4%
Therefore, this experiment is do able.