Difference between revisions of "Calculation of radiation yield"
Jump to navigation
Jump to search
Line 63: | Line 63: | ||
<math>\Phi_n(Z,E_0,k) = \frac{\Phi_{n(1.a or 1.b)}(k_x)-\Phi_{tip}(T_0)}{k_x - T_0}(k-k_x)+\Phi_{n(1.a or 1.b)}(k_x)</math> | <math>\Phi_n(Z,E_0,k) = \frac{\Phi_{n(1.a or 1.b)}(k_x)-\Phi_{tip}(T_0)}{k_x - T_0}(k-k_x)+\Phi_{n(1.a or 1.b)}(k_x)</math> | ||
− | <math>\Phi_{tip} = 4\pi ae^{-\pi a}F(\zeta)P(\beta)</math> | + | <math>\Phi_{tip} = 4\pi ae^{-\pi a}F(\zeta)P(\beta)[1-0.838aR(\beta)+0.650a^2]</math> |
---- | ---- |
Revision as of 22:27, 9 May 2008
The number of photons per MeV per incident electron per
of radiator (Z,A) is given by [*]:,
where
- photon kinetic energy in MeV;- incident electron total energy (in units of the electron rest mass);
- incident photon energy (in units of the electron rest mass);
Calculation of
;
;
;
;
;
;
;
Case A: For
the screening effect is negligible, (free electron form) and in this case .Case B: For
we have
Calculation of
1.a
, :
- screening functions;
, for ;
, for ;
1.b
, :
2.
Reference: [*] J.L. Matthews, R.O. Owens, Accurate Formulae For the Calculation of High Energy Electron Bremsstrahlung Spectra, NIM III (1973) I57-I68.