Difference between revisions of "Calculation of radiation yield"
Jump to navigation
Jump to search
Line 21: | Line 21: | ||
<math>C_B = \frac{\frac{1}{4}\psi(\varepsilon)-1-lnZ^{\frac{2}{3}}}{3.798-ln\varepsilon-lnZ^{\frac{2}{3}}}</math>; | <math>C_B = \frac{\frac{1}{4}\psi(\varepsilon)-1-lnZ^{\frac{2}{3}}}{3.798-ln\varepsilon-lnZ^{\frac{2}{3}}}</math>; | ||
− | '''Case A:''' For <math>\varepsilon \geq 0.88</math> the screening effect is negligible, <math>\psi(\varepsilon)=19.19-4ln\varepsilon</math> (free electron form) and | + | '''Case A:''' For <math>\varepsilon \geq 0.88</math> the screening effect is negligible, <math>\psi(\varepsilon)=19.19-4ln\varepsilon</math> (free electron form) and in this case <math>C_B = 1</math>. |
Revision as of 20:22, 8 May 2008
The number of photons per MeV per incident electron per
of radiator (Z,A) is given by [*]:,
where
- photon kinetic energy in MeV;- incident electron total energy (in units of the electron rest mass);
- incident photon energy (in units of the electron rest mass);
;
;
;
;
;
;
Case A: For
the screening effect is negligible, (free electron form) and in this case .