Difference between revisions of "Theory"
Jump to navigation
Jump to search
| Line 38: | Line 38: | ||
The last equation can be expressed as<br> | The last equation can be expressed as<br> | ||
<math>\triangle R_{np} ^{\pi^+ + \pi^-} = R_{n/p}[\frac {A_p^{\pi^+}} {1 + \frac {1} {R_p^{{\pi^+}/{\pi^-}}} } + \frac {A_p^{\pi^-}} {1 + R_p^{{\pi^+}/{\pi^-}} } ] | <math>\triangle R_{np} ^{\pi^+ + \pi^-} = R_{n/p}[\frac {A_p^{\pi^+}} {1 + \frac {1} {R_p^{{\pi^+}/{\pi^-}}} } + \frac {A_p^{\pi^-}} {1 + R_p^{{\pi^+}/{\pi^-}} } ] | ||
| − | + R_{p/n}[\frac {A_n^{\pi^+}} {1 + \frac {1} {R_n^{{\pi^+}/{\pi^-}}} } + \frac {A_n^{\pi^-}} {1 + R_n^{{\pi^+}/{\pi^-}} } ]</math> | + | + R_{p/n}[\frac {A_n^{\pi^+}} {1 + \frac {1} {R_n^{{\pi^+}/{\pi^-}}} } + \frac {A_n^{\pi^-}} {1 + R_n^{{\pi^+}/{\pi^-}} } ]</math><br> |
| + | |||
| + | |||
| + | <math>R_{i/j} = \frac {\frac {1 + (1-y)^2} {2y(2 - y)} } {1 - \frac {R_{i/j}^{\pi^+}} {1 + \frac{1} {R_j^{\frac{1} {\pi^+/\pi^-} }}} } </math> | ||
Revision as of 19:21, 18 July 2007
Inclusive Scattering
W
Semi-Inclusive Scattering
Quark distribution Functions
describe and here
Unpolarized
Polarized
The inclusive double polarization asymmetries can be written in terms of polarized and unpolarized valence quark distributions,
I =
I =
The semi-inclusive pion electro-production asymmetries can be written in terms of the valence quark distributions
=
=
where
=
where is the measured difference of the yield from oppositely charged pions.
The semi - inclusive asymmetry can be expressed in the following way
-
where and
An asymmetry
The last equation can be expressed as