Difference between revisions of "Theory"
Jump to navigation
Jump to search
Line 33: | Line 33: | ||
− | An asymmetry <math>\triangle R_{np} ^{\pi^+ + \pi^-} = \frac {\triangle\sigma_p^{\pi^+ + \pi^-} - \triangle\sigma_n^{\pi^+ + \pi^-}} {\sigma_p^{\pi^+ + \pi^-} - \sigma_n^{\pi^+ + \pi^-}} = \frac {g_1^p - g_1^n} {F_1^p - F_1^n} (x, Q^2)</math> | + | An asymmetry <math>\triangle R_{np} ^{\pi^+ + \pi^-} = \frac {\triangle\sigma_p^{\pi^+ + \pi^-} - \triangle\sigma_n^{\pi^+ + \pi^-}} {\sigma_p^{\pi^+ + \pi^-} - \sigma_n^{\pi^+ + \pi^-}} = \frac {g_1^p - g_1^n} {F_1^p - F_1^n} (x, Q^2)</math><br> |
+ | |||
+ | |||
+ | The last equation can be expressed as<br> | ||
+ | <math>\triangle R_{np} ^{\pi^+ + \pi^-} = R_{n/p}[\frac {A_p^{\pi^+}} {1 + \frac {1} {R_p^{{\pi^+}/{\pi^-}}} } </math> - <math>\frac {A^{\pi^-}} {1 + R_p^{{\pi^+}/{\pi^-}} } ] | ||
+ | + R_{n/p}[\frac {A^{\pi^+}} {1 + \frac {1} {R_p^{{\pi^+}/{\pi^-}}} } </math> - <math>\frac {A^{\pi^-}} {1 + R_p^{{\pi^+}/{\pi^-}} } ]</math> |
Revision as of 18:35, 18 July 2007
Inclusive Scattering
W
Semi-Inclusive Scattering
Quark distribution Functions
describe
and hereUnpolarized
Polarized
The inclusive double polarization asymmetries
can be written in terms of polarized and unpolarized valence quark distributions,
I =
I =
The semi-inclusive pion electro-production asymmetries can be written in terms of the valence quark distributions
=
=
where
where is the measured difference of the yield from oppositely charged pions.
The semi - inclusive asymmetry can be expressed in the following way
where
An asymmetry
The last equation can be expressed as
- -