Difference between revisions of "Theory"

From New IAC Wiki
Jump to navigation Jump to search
Line 5: Line 5:
 
==Unpolarized==
 
==Unpolarized==
 
==Polarized==
 
==Polarized==
The inclusive double polarization asymmetries <math>A_N</math> can be written in terms of polarized <math>\triangle q_v (x)</math> and unpolarized <math>q_v (x)</math> valence quark distributions,
+
The inclusive double polarization asymmetries <math>A_N</math> can be written in terms of polarized <math>\triangle q_v (x)</math> and unpolarized <math> q_v (x)</math> valence quark distributions,
 
      
 
      
  
 
<math>A_{1, p}</math> = <math>\frac {4\triangle u_v (x) + \triangle d_v (x)} {4 u_v (x) + d_v (x)} </math>    <br>
 
<math>A_{1, p}</math> = <math>\frac {4\triangle u_v (x) + \triangle d_v (x)} {4 u_v (x) + d_v (x)} </math>    <br>
 
<math>A_{1, n}</math> = <math>\frac {\triangle u_v (x) + 4\triangle d_v (x)} {u_v (x) + 4d_v (x)} </math>    <br>
 
<math>A_{1, n}</math> = <math>\frac {\triangle u_v (x) + 4\triangle d_v (x)} {u_v (x) + 4d_v (x)} </math>    <br>

Revision as of 23:51, 17 July 2007

Inclusive Scattering

W

Semi-Inclusive Scattering

Quark distribution Functions

Unpolarized

Polarized

The inclusive double polarization asymmetries [math]A_N[/math] can be written in terms of polarized [math]\triangle q_v (x)[/math] and unpolarized [math] q_v (x)[/math] valence quark distributions,


[math]A_{1, p}[/math] = [math]\frac {4\triangle u_v (x) + \triangle d_v (x)} {4 u_v (x) + d_v (x)} [/math]
[math]A_{1, n}[/math] = [math]\frac {\triangle u_v (x) + 4\triangle d_v (x)} {u_v (x) + 4d_v (x)} [/math]