Difference between revisions of "TF Antimony"

From New IAC Wiki
Jump to navigation Jump to search
Line 21: Line 21:
  
 
Theradiagnostic is an therapy with companion atoms.  One atom serves as the radiological therapy and the other atom emits radiation that is detectable to a diagnostic device.  For example Sb-119 emits low energy auger electrons to kill cancer cells while Sb-117 beta decays emitting a positron that annihilates and emits two 511 photons that are detectable by a PET scanner. The half life of Sb-117 is less than 3 hours and the half life of Sb-119 is 38 hours.
 
Theradiagnostic is an therapy with companion atoms.  One atom serves as the radiological therapy and the other atom emits radiation that is detectable to a diagnostic device.  For example Sb-119 emits low energy auger electrons to kill cancer cells while Sb-117 beta decays emitting a positron that annihilates and emits two 511 photons that are detectable by a PET scanner. The half life of Sb-117 is less than 3 hours and the half life of Sb-119 is 38 hours.
 +
==Competition==
 +
 +
===Cyclotrons===
 +
 +
 +
 +
Sn-119 +p -> Sb-119 + n
 +
 +
Separating Sn-119 from Sb-119 reqires more than a half life of Sb-119
 +
 +
as a result you get 0.001 Ci in 10 days
 +
 +
 +
===Proton irradiation===
 +
Sb-121 + p -> Te-119m + 3n -> Sb-119
 +
 +
Sb-123 + p -> Te-119m + 5n -> Sb-119
 +
 +
4 day halflife for Te-119m to decay to Sb-119
 +
 +
0.001 Ci in 45 days
  
 
=Separating Sb from Te=
 
=Separating Sb from Te=

Revision as of 23:32, 31 July 2020

Antiomony(Sb)

TF_Isotopes


Tellurium(Te) to Antimony(Sb)

A pure Tellurium foils is immersed in a bremstraahlung beam to eject a proton from Te-120 leaving the Antimony isotope Se-119.

\gamma + Te-120 -> Sb-119 + p

Yield Problem:  Te-119 is only 0.1% of the natural abundance.  Highest natural abundance is Te-126 at 19%, then Te-125 at 7%, Te-124 at 5%,  Te-122 at 2.5%, Te-123 at 1%.


Melting point of foils is 450 C


Sb-119 decays by emitting K-edge and conversion electrons, collectively called Auger electrons.

Sb-117 is a PET analog => in 2 hrs Sb-117 decays emitting a positron that will annihilate and produce two 511 keV photons for a PET imager to detect.

Theradiagnostic is an therapy with companion atoms. One atom serves as the radiological therapy and the other atom emits radiation that is detectable to a diagnostic device. For example Sb-119 emits low energy auger electrons to kill cancer cells while Sb-117 beta decays emitting a positron that annihilates and emits two 511 photons that are detectable by a PET scanner. The half life of Sb-117 is less than 3 hours and the half life of Sb-119 is 38 hours.

Competition

Cyclotrons

Sn-119 +p -> Sb-119 + n

Separating Sn-119 from Sb-119 reqires more than a half life of Sb-119

as a result you get 0.001 Ci in 10 days


Proton irradiation

Sb-121 + p -> Te-119m + 3n -> Sb-119

Sb-123 + p -> Te-119m + 5n -> Sb-119

4 day halflife for Te-119m to decay to Sb-119

0.001 Ci in 45 days

Separating Sb from Te

use anion-exchange chromatographic

Radiochemical separation of antimony and tellurium in isotope production and in radionuclide generators, D. Downs & D. A. Miller, Journal of Radioanalytical and Nuclear Chemistry volume 262, Article number: 241 (2004)

References

Large Scale Production of 119mTe and 119Sb for Radiopharmaceutical Applications ,Kevin T. Bennett, Sharon E. Bone, Andrew C. Akin, Eva R. Birnbaum, Anastasia V. Blake, Mark Brugh, Scott R. Daly, Jonathan W. Engle, Michael E. Fassbender, Maryline G. Ferrier, Stosh A. Kozimor*, Laura M. Lilley, Christopher A. Martinez, Veronika Mocko, Francois M. Nortier, Benjamin W. Stein, Sara L. Thiemann, and Christiaan Vermeulen, Cite this: ACS Cent. Sci. 2019, 5, 3, 494–505 Publication Date:February 25, 2019 https://doi.org/10.1021/acscentsci.8b00869


https://pubs.acs.org/doi/10.1021/acscentsci.8b00869

Accelerator based Production of Auger-Electron-emitting Isotopes for Radionuclide Therapy Helge ThisgaardR, PhD-theis, pg 22; Thesis may have led to this publication Thisgaard H.; Jensen M. Production of the Auger emitter 119Sb for targeted radionuclide therapy using a small PET-cyclotron. Appl. Radiat. Isot. 2009, 67, 34–38.

The Paradox of Using Radionuclides To Treat Disease, Thomas E. Albrecht-Schmitt, ACS Cent Sci. 2019 Mar 27; 5(3): 383–385


Anion exchange separation of tin, antimony and tellurium, GilbertW. SmithS.A.Reynolds , Analytica Chimica Acta Volume 12, 1955, Pages 151-153

TF_Isotopes