Difference between revisions of "Relativistic Differential Cross-section"
Jump to navigation
Jump to search
<\center>
Line 36: | Line 36: | ||
− | <center><math> | + | <center><math>W_{i} \equiv E_{1}+E_{2} \qquad \qquad W_f \equiv E_{1}^{'}+E_{2}^{'}</math></center> |
− | <center><math>dW_f= | + | <center><math>dW_f=dE_{1}^{'}+dE_{2}^{'}=\frac{\vec p_{1}^{'} d \vec p_{1}^{'}}{E_{1}^{'}}+\frac{p_{2}^{'} dp_{2}^{'}}{E_{2}^{'}}</math></center> |
In the center of mass frame | In the center of mass frame | ||
− | <center><math>|\vec | + | <center><math>|\vec p_{1}^{'}|=|\vec p_{2}^{'}|=|\vec p_{f}^{'}| \rightarrow |\vec p_{1}^{'} d \vec p_{1}^{'}|=|\vec p_{2}^{'} d \vec p_{2}^{'}|=|\vec p_{f}^{'} d \vec p_{f}^{'}|</math></center> |
− | <center><math> | + | <center><math>dW_{f}=\frac{W_{f}}{E_{2}^{'}}dE_{1}^{'}</math></center> |
− | <center><math>dQ_{cms}=\frac{1}{(4\pi)^2}\delta (W_i-W_f)\frac{\vec | + | <center><math>dQ_{cms}=\frac{1}{(4\pi)^2}\delta (W_i-W_f)\frac{\vec p_{f} dW_{f}}{W_{f}}d\Omega</math></center> |
− | <center><math>dQ_{cms}=\frac{1}{(4\pi)^2}\frac{\vec | + | <center><math>dQ_{cms}=\frac{1}{(4\pi)^2}\frac{\vec p_{f}}{\sqrt {s}}d\Omega</math></center> |
− | <center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf | + | <center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_{f}}{\mathbf p_{i}}|\mathcal {M}|^2</math></center> |
Revision as of 20:49, 29 December 2018
Relativistic Differential Cross-section
dQ is the invariant Lorentz phase space factor
and F is the flux of incoming particles
In the center of mass frame