Difference between revisions of "TF InclusiveDeltaDoverD"
Jump to navigation
Jump to search
| Line 13: | Line 13: | ||
using the above definition to define the proton and neutron unpolarized structure function{ | using the above definition to define the proton and neutron unpolarized structure function{ | ||
| − | <math> F_1^p(x) \equiv \frac{1}{2} \sum_q e_i^2 q_i^p(x)\ | + | <math> F_1^p(x) \equiv \frac{1}{2} \sum_q e_i^2 q_i^p(x) = \frac{1}{2}\left [ \left( \frac{2}{3} \right)^2 u^p(x)+ \left( \frac{-1}{3} \right)^2 d^p(x)\right ] </math> |
| + | |||
| + | <math> F_1^n(x) \equiv \frac{1}{2} \sum_q e_i^2 q_i^n(x) </math> | ||
Using Isosping symmetry | Using Isosping symmetry | ||
| − | <math>u(x) \equiv u^p(x)\equiv d^n(x) </math> and <math>d(x) \equiv d^p(x)\equiv u^n(x) </math> | + | <math>u(x) \equiv u^p(x)\equiv d^n(x) \;\;\;\;\;</math> and <math>d(x) \equiv d^p(x)\equiv u^n(x) </math> |
| + | |||
| − | |||
<math> g_1(x) \equiv \frac{1}{2} \sum_q e_i^2 \Delta q_i(x) </math> | <math> g_1(x) \equiv \frac{1}{2} \sum_q e_i^2 \Delta q_i(x) </math> | ||
Revision as of 16:07, 22 September 2018
using the above definition to define the proton and neutron unpolarized structure function{
Using Isosping symmetry
and
<ref> Eq. 28 from https://arxiv.org/abs/1505.07877 which is based on https://arxiv.org/abs/0809.4308</ref>
<references />