Difference between revisions of "Limits based on Mandelstam Variables"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<center><math>\textbf{\underline{Navigation}}</math>
+
<center><math>\underline{\textbf{Navigation}}</math>
  
 
[[U-Channel|<math>\vartriangleleft </math>]]
 
[[U-Channel|<math>\vartriangleleft </math>]]
Line 149: Line 149:
  
  
<center><math>\textbf{\underline{Navigation}}</math>
+
<center><math>\underline{\textbf{Navigation}}</math>
  
 
[[U-Channel|<math>\vartriangleleft </math>]]
 
[[U-Channel|<math>\vartriangleleft </math>]]

Revision as of 18:49, 15 May 2018

Navigation_


Limits based on Mandelstam Variables

Since the Mandelstam variables are the scalar product of 4-momenta, which are invariants, they are invariants as well. The sum of these invariant variables must also be invariant as well. Find the sum of the 3 Mandelstam variables when the two particles have equal mass in the center of mass frame gives:


s+t+u=(4(m2+p 2))+(2p 2(1cos θ))+(2p 2(1+cos θ))


s+t+u4m2


Since

s4(m2+p 2)


This implies

s4m2


In turn, this implies


t0u0


At the condition both t and u are equal to zero, we find


t=0u=0


2p 2(1cos θ)=02p 2(1+cos θ)=0


(2p 2+2p 2cos θ)=0(2p 22p 2cos θ)=0


2p 2cos θ=2p 22p 2cos θ=2p 2


cos θ=1cos θ=1


θt=0=arccos 1=0θu=0=arccos 1=180

Holding u constant at zero we can find the minimum of t


s+tmax4m2


tmax=4m2s


tmax=4m24m24p 2



The maximum transfer of momentum would be


tmax=4p 2



2p 2(1cos θt=max)=4p 2


(1cos θt=max)=2


cos θt=max=1


θt=maxarccos1


The domain of the arccos function is from −1 to +1 inclusive and the range is from 0 to π radians inclusive (or from 0° to 180°). We find as expected for u=0 at θ=180

θt=max=180


However, from the definition of s being invariant between frames of reference

sCM FRAME(P1+P2)2=(P1+P2)2=LAB FRAME(P1+P2)2=(P1+P2)2


In the center of mass frame of reference,

E1=E2=Eandp 1=p 2=p 


s2m2+2(E21+p 2)


Using the relativistic energy equation

E2p 2+m2


s2m2+2((m2+p 2)+p 2)


s=4m2+4p 2)


s4m24=p 2



t=2p 2(1cos θ)=2(s4m2)4(1cos θ)


2ts4m2=(1cos θ)


cos θ=12ts4m2




Navigation_