Difference between revisions of "Linac Run Plan April 2018, Dr. McNulty"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
==Calculations==
+
==Calculations (1)==
  
 
Assuming <math>100\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
 
Assuming <math>100\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
Line 8: Line 8:
  
 
<math>10*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=6.2422*10^{10}\frac{e-}{pulse}</math>
 
<math>10*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=6.2422*10^{10}\frac{e-}{pulse}</math>
 +
 +
 +
 +
==[[Absorbed Dose Information]]==
 +
 +
Using a distance of 25cm for all simulations following.
 +
 +
===OSL===
 +
 +
<math>\frac{1}{1000}</math> of a pulse. ~62mil e- simulated, ~62bil e- per pulse. With beam parameters given above.
 +
 +
Deposited Energy: <math>4.46596*10^{6} MeV</math>
 +
 +
OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.
 +
 +
OSL Crystal density<math>=3.9698\frac{g}{cm^{3}}</math>
 +
 +
Mass of a single OSL crystal: <math>(\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g</math>
 +
 +
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>4.46596*10^{9} MeV</math>
 +
 +
Converting to Joules for dose calculation: <math>4.46596*10^{9} MeV=7.15525*10^{-4}J</math>
 +
 +
Average dose per pulse <math>\frac{7.15525*10^{-4}J}{0.0234777*10^{-3}\ Kg}=30.4768\ Gy=3047.68\ rad</math>
 +
 +
===Quartz===
 +
 +
<math>\frac{1}{1000}</math> of a pulse. ~62mil e- simulated, ~62bil e- per pulse. With beam parameters given above.
 +
 +
Deposited Energy: <math>4.71875*10^{8} MeV</math>
 +
 +
Quartz Geometry: 1 inch cylinder with electrons incident upon the base of the cylinder.
 +
 +
Quartz density<math>=2.32\frac{g}{cm^{3}}</math>
 +
 +
Mass of Quartz used in simulation: <math>(\pi(1.27)^{2}*(2.54))*(2.32)=29.8593g</math>
 +
 +
Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes <math>4.71875*10^{11} MeV</math>
 +
 +
Converting to Joules for dose calculation: <math>4.71875*10^{11} MeV=0.0756027J</math>
 +
 +
Average dose per pulse <math>\frac{0.0756027\ J}{29.8593*10^{-3}\ Kg}=2.53196\ Gy=253.196\ rad</math>
 +
 +
==Calculations (2)==
 +
 +
Cut current by a factor of 4. 100mA->25mA
 +
 +
Assuming <math>25\frac{mA}{pulse}</math> and a pulse width of <math>100ns</math>
 +
 +
Then <math>25\frac{mA}{pulse}=25\frac{mC}{s*pulse}=0.025\frac{C}{s*pulse}</math>
 +
 +
<math>0.025\frac{C}{s*pulse}(100ns)=2.5*10^{-9}\frac{C}{pulse}</math>
 +
 +
<math>2.5*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{10}\frac{e-}{pulse}</math>
  
  

Revision as of 16:44, 18 April 2018

Calculations (1)

Assuming [math]100\frac{mA}{pulse}[/math] and a pulse width of [math]100ns[/math]

Then [math]100\frac{mA}{pulse}=100\frac{mC}{s*pulse}=0.1\frac{C}{s*pulse}[/math]

[math]0.1\frac{C}{s*pulse}(100ns)=10*10^{-9}\frac{C}{pulse}[/math]

[math]10*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=6.2422*10^{10}\frac{e-}{pulse}[/math]


Absorbed Dose Information

Using a distance of 25cm for all simulations following.

OSL

[math]\frac{1}{1000}[/math] of a pulse. ~62mil e- simulated, ~62bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]4.46596*10^{6} MeV[/math]

OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.

OSL Crystal density[math]=3.9698\frac{g}{cm^{3}}[/math]

Mass of a single OSL crystal: [math](\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g[/math]

Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes [math]4.46596*10^{9} MeV[/math]

Converting to Joules for dose calculation: [math]4.46596*10^{9} MeV=7.15525*10^{-4}J[/math]

Average dose per pulse [math]\frac{7.15525*10^{-4}J}{0.0234777*10^{-3}\ Kg}=30.4768\ Gy=3047.68\ rad[/math]

Quartz

[math]\frac{1}{1000}[/math] of a pulse. ~62mil e- simulated, ~62bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]4.71875*10^{8} MeV[/math]

Quartz Geometry: 1 inch cylinder with electrons incident upon the base of the cylinder.

Quartz density[math]=2.32\frac{g}{cm^{3}}[/math]

Mass of Quartz used in simulation: [math](\pi(1.27)^{2}*(2.54))*(2.32)=29.8593g[/math]

Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes [math]4.71875*10^{11} MeV[/math]

Converting to Joules for dose calculation: [math]4.71875*10^{11} MeV=0.0756027J[/math]

Average dose per pulse [math]\frac{0.0756027\ J}{29.8593*10^{-3}\ Kg}=2.53196\ Gy=253.196\ rad[/math]

Calculations (2)

Cut current by a factor of 4. 100mA->25mA

Assuming [math]25\frac{mA}{pulse}[/math] and a pulse width of [math]100ns[/math]

Then [math]25\frac{mA}{pulse}=25\frac{mC}{s*pulse}=0.025\frac{C}{s*pulse}[/math]

[math]0.025\frac{C}{s*pulse}(100ns)=2.5*10^{-9}\frac{C}{pulse}[/math]

[math]2.5*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=1.56055*10^{10}\frac{e-}{pulse}[/math]


Absorbed Dose Information

Using a distance of 25cm for all simulations following.

OSL

[math]\frac{1}{1000}[/math] of a pulse. ~62mil e- simulated, ~62bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]4.46596*10^{6} MeV[/math]

OSL geometry: 0.501cm diameter cylinder of 0.03cm thickness with beam incident on flat face.

OSL Crystal density[math]=3.9698\frac{g}{cm^{3}}[/math]

Mass of a single OSL crystal: [math](\pi(0.2505)^{2}*(0.03))*(3.9698)=0.0234777g[/math]

Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes [math]4.46596*10^{9} MeV[/math]

Converting to Joules for dose calculation: [math]4.46596*10^{9} MeV=7.15525*10^{-4}J[/math]

Average dose per pulse [math]\frac{7.15525*10^{-4}J}{0.0234777*10^{-3}\ Kg}=30.4768\ Gy=3047.68\ rad[/math]

Quartz

[math]\frac{1}{1000}[/math] of a pulse. ~62mil e- simulated, ~62bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]4.71875*10^{8} MeV[/math]

Quartz Geometry: 1 inch cylinder with electrons incident upon the base of the cylinder.

Quartz density[math]=2.32\frac{g}{cm^{3}}[/math]

Mass of Quartz used in simulation: [math](\pi(1.27)^{2}*(2.54))*(2.32)=29.8593g[/math]

Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes [math]4.71875*10^{11} MeV[/math]

Converting to Joules for dose calculation: [math]4.71875*10^{11} MeV=0.0756027J[/math]

Average dose per pulse [math]\frac{0.0756027\ J}{29.8593*10^{-3}\ Kg}=2.53196\ Gy=253.196\ rad[/math]



Thesis