Difference between revisions of "Linac Run Plan April 2018, Dr. McNulty"

From New IAC Wiki
Jump to navigation Jump to search
Line 77: Line 77:
 
Converting to Joules for dose calculation: <math>4.46596*10^{10} MeV=7.15525*10^{-5}J</math>
 
Converting to Joules for dose calculation: <math>4.46596*10^{10} MeV=7.15525*10^{-5}J</math>
  
Average dose <math>\frac{7.15525*10^{-5}J}{0.0234777*10^{-3}\ Kg}=3.04768\ Gy=304.768\ rad</math>
+
Average dose per pulse <math>\frac{7.15525*10^{-5}J}{0.0234777*10^{-3}\ Kg}=3.04768\ Gy=304.768\ rad</math>
  
 
===Quartz===
 
===Quartz===
Line 95: Line 95:
 
Converting to Joules for dose calculation: <math>4.71875*10^{12} MeV=0.756027J</math>
 
Converting to Joules for dose calculation: <math>4.71875*10^{12} MeV=0.756027J</math>
  
Average dose <math>\frac{0.756027\ J}{29.8593*10^{-3}\ Kg}=25.3196\ Gy=2531.96\ rad</math>
+
Average dose per pulse <math>\frac{0.756027\ J}{29.8593*10^{-3}\ Kg}=25.3196\ Gy=2531.96\ rad</math>
  
  
 
----
 
----
 
[[Thesis]]
 
[[Thesis]]

Revision as of 18:38, 16 April 2018

Date

85 useable OSLs

Machine: 24b Linac

Beam Energy: 8 MeV

Rep Rate: Max (180Hz)?

Shot # Start Time End Time Number of OSLs Distance to end of beampipe Beam Current Aluminum Brick Background Subtracted PMT Counts
1 7am 7:15am 1 25cm amps Out
2 7:20am 7:35am 1 25cm amps Out
3 7:40am 7:55am 1 25cm amps Out
4 8:00 8:20 1 25cm amps Out
5 1 25cm amps Out
6 1 25cm amps In
7 1 25cm amps In
8 1 25cm amps In
9 1 25cm amps In
10 1 25cm amps In
11 10 25cm amps Out
12 10 25cm amps Out
13 10 25cm amps Out
14 10 25cm amps Out
15 10 25cm amps Out
16 10 25cm amps In
17 15 25cm amps In

Calculations

Assuming [math]100\frac{mA}{pulse}[/math] and a pulse width of [math]100ns[/math]

Then [math]100\frac{mA}{pulse}=100\frac{mC}{s*pulse}=0.1\frac{C}{s*pulse}[/math]

[math]0.1\frac{C}{s*pulse}(100ns)=10*10^{-9}\frac{C}{pulse}[/math]

[math]10*10^{-9}\frac{C}{pulse}*\frac{1\ e-}{1.602*10^{-19}}=6.2422*10^{10}\frac{e-}{pulse}[/math]


Absorbed Dose Information

OSL

[math]\frac{1}{1000}[/math] of a pulse. ~62mil e- simulated, ~62bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]4.46596*10^{6} MeV[/math]

OSL Crystal density[math]=3.9698\frac{g}{cm^{3}}[/math]

Mass of a single OSL crystal: [math](\pi(0.501)^{2}*(0.03))*(3.9698)=0.0234777g[/math]

Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes [math]4.46596*10^{10} MeV[/math]

Converting to Joules for dose calculation: [math]4.46596*10^{10} MeV=7.15525*10^{-5}J[/math]

Average dose per pulse [math]\frac{7.15525*10^{-5}J}{0.0234777*10^{-3}\ Kg}=3.04768\ Gy=304.768\ rad[/math]

Quartz

[math]\frac{1}{1000}[/math] of a pulse. ~62mil e- simulated, ~62bil e- per pulse. With beam parameters given above.

Deposited Energy: [math]4.71875*10^{8} MeV[/math]

Quartz Geometry: 1 inch cylinder with electrons incident upon the base of the cylinder.

Quartz density[math]=2.32\frac{g}{cm^{3}}[/math]

Mass of Quartz used in simulation: [math](\pi(1.27)^{2}*(2.54))*(2.32)=29.8593g[/math]

Scaling deposited energy by 1000 to account for only shooting a 1000th of a pulse, the deposited energy becomes [math]4.71875*10^{12} MeV[/math]

Converting to Joules for dose calculation: [math]4.71875*10^{12} MeV=0.756027J[/math]

Average dose per pulse [math]\frac{0.756027\ J}{29.8593*10^{-3}\ Kg}=25.3196\ Gy=2531.96\ rad[/math]



Thesis