Difference between revisions of "Frame of Reference Transformation"
Jump to navigation
Jump to search
Where
Where
is the Lorentz transformation matrix for motion in the z direction.
Where
Line 76: | Line 76: | ||
− | <center><math>dt^' \equiv \frac{\partial t'}{\partial t} dt+\frac{\partial t'}{\partial x} dx + \frac{\partial t'}{\partial y} dy+ \frac{\partial t'}{\partial z} dz \Rightarrow dx^{'0} \equiv \frac{\partial x^{'0}}{\partial x^0} | + | <center><math>dt^' \equiv \frac{\partial t'}{\partial t} dt+\frac{\partial t'}{\partial x} dx + \frac{\partial t'}{\partial y} dy+ \frac{\partial t'}{\partial z} dz \Rightarrow dx^{'0} \equiv \frac{\partial x^{'0}}{\partial x^0} dx^0+\frac{\partial x^{'0}}{\partial x^1} dx^1 + \frac{\partial x^{'0}}{\partial x^2} dx^2+ \frac{\partial x^{'0}}{\partial x^3} dx^3</math></center> |
− | <center><math>dx^' \equiv \frac{\partial t'}{\partial t} dt+\frac{\partial x'}{\partial x} dx + \frac{\partial x'}{\partial y} dy+ \frac{\partial x'}{\partial z} dz</math></center> | + | <center><math>dx^' \equiv \frac{\partial t'}{\partial t} dt+\frac{\partial x'}{\partial x} dx + \frac{\partial x'}{\partial y} dy+ \frac{\partial x'}{\partial z} dz\Rightarrow dx^{'1} \equiv \frac{\partial x^{'1}}{\partial x^0} dx^0+\frac{\partial x^{'1}}{\partial x^1} dx^1 + \frac{\partial x^{'1}}{\partial x^2} dx^2+ \frac{\partial x^{'1}}{\partial x^3} dx^3</math></center> |
− | <center><math>dy^' \equiv \frac{\partial y'}{\partial t} dt+\frac{\partial y'}{\partial x} dx + \frac{\partial y'}{\partial y} dy+ \frac{\partial y'}{\partial z} dz</math></center> | + | <center><math>dy^' \equiv \frac{\partial y'}{\partial t} dt+\frac{\partial y'}{\partial x} dx + \frac{\partial y'}{\partial y} dy+ \frac{\partial y'}{\partial z} dz\Rightarrow dx^{'2} \equiv \frac{\partial x^{'2}}{\partial x^0} dx^0+\frac{\partial x^{'2}}{\partial x^1} dx^1 + \frac{\partial x^{'2}}{\partial x^2} dx^2+ \frac{\partial x^{'2}}{\partial x^3} dx^3</math></center> |
− | <center><math>dz^' \equiv \frac{\partial z'}{\partial t} dt+\frac{\partial z'}{\partial x} dx + \frac{\partial z'}{\partial y} dy+ \frac{\partial z'}{\partial z} dz</math></center> | + | <center><math>dz^' \equiv \frac{\partial z'}{\partial t} dt+\frac{\partial z'}{\partial x} dx + \frac{\partial z'}{\partial y} dy+ \frac{\partial z'}{\partial z} dz\Rightarrow dx^{'3} \equiv \frac{\partial x^{'3}}{\partial x^0} dx^0+\frac{\partial x^{'3}}{\partial x^1} dx^1 + \frac{\partial x^{'3}}{\partial x^2} dx^2+ \frac{\partial x^{'3}}{\partial x^3} dx^3</math></center> |
Revision as of 03:19, 10 July 2017
Using the Lorentz transformations and the index notation,
This can be expressed in matrix form as
Letting the indices run from 0 to 3, we can write
Using the Einstein convention, this can be written as
If we take the 4-vector quantities to be on an infinitesimally small scale, then there exists a linear relationship between the transformation. Following the rules of partial differentiation,
The Lorentz transformations are also invariant in that they are just a rotation, i.e. Det
. The inner product is preserved,