Difference between revisions of "Frame of Reference Transformation"

From New IAC Wiki
Jump to navigation Jump to search
Line 76: Line 76:
  
  
<center><math>dt \equiv  \frac{\partial t'}{\partial t} dt+\frac{\partial t'}{\partial x} dx + \frac{\partial t'}{\partial y} dy+ \frac{\partial t'}{\partial z} dz</math></center>
+
<center><math>dt^' \equiv  \frac{\partial t'}{\partial t} dt+\frac{\partial t'}{\partial x} dx + \frac{\partial t'}{\partial y} dy+ \frac{\partial t'}{\partial z} dz</math></center>
  
  
<center><math>dx \equiv  \frac{\partial t'}{\partial t} dt+\frac{\partial x'}{\partial x} dx + \frac{\partial x'}{\partial y} dy+ \frac{\partial x'}{\partial z} dz</math></center>
+
<center><math>dx^' \equiv  \frac{\partial t'}{\partial t} dt+\frac{\partial x'}{\partial x} dx + \frac{\partial x'}{\partial y} dy+ \frac{\partial x'}{\partial z} dz</math></center>
  
  
<center><math>dy \equiv  \frac{\partial y'}{\partial t} dt+\frac{\partial y'}{\partial x} dx + \frac{\partial y'}{\partial y} dy+ \frac{\partial y'}{\partial z} dz</math></center>
+
<center><math>dy^' \equiv  \frac{\partial y'}{\partial t} dt+\frac{\partial y'}{\partial x} dx + \frac{\partial y'}{\partial y} dy+ \frac{\partial y'}{\partial z} dz</math></center>
  
  
<center><math>dz \equiv  \frac{\partial z'}{\partial t} dt+\frac{\partial z'}{\partial x} dx + \frac{\partial z'}{\partial y} dy+ \frac{\partial z'}{\partial z} dz</math></center>
+
<center><math>dz^' \equiv  \frac{\partial z'}{\partial t} dt+\frac{\partial z'}{\partial x} dx + \frac{\partial z'}{\partial y} dy+ \frac{\partial z'}{\partial z} dz</math></center>
  
  

Revision as of 03:12, 10 July 2017

Using the Lorentz transformations and the index notation,

{t=γ(tvz/c2)x=xy=yz=γ(zvt)


[x0x1x2x3]=[γ(x0vx3/c)x1x2γ(x3vx0)]=[γ(x0βx3)x1x2γ(x3vx0)]


Where βvc

This can be expressed in matrix form as

[x0x1x2x3]=[γ00γβ01000010γβ00γ][x0x1x2x3]


Letting the indices run from 0 to 3, we can write

xμ=3ν=0(Λμν)xν


Where Λ is the Lorentz transformation matrix for motion in the z direction.


Using the Einstein convention, this can be written as

xμ=Λμνxν

If we take the 4-vector quantities to be on an infinitesimally small scale, then there exists a linear relationship between the transformation. Following the rules of partial differentiation,


dt^' \equiv  \frac{\partial t'}{\partial t} dt+\frac{\partial t'}{\partial x} dx + \frac{\partial t'}{\partial y} dy+ \frac{\partial t'}{\partial z} dz


dx^' \equiv  \frac{\partial t'}{\partial t} dt+\frac{\partial x'}{\partial x} dx + \frac{\partial x'}{\partial y} dy+ \frac{\partial x'}{\partial z} dz


dy^' \equiv  \frac{\partial y'}{\partial t} dt+\frac{\partial y'}{\partial x} dx + \frac{\partial y'}{\partial y} dy+ \frac{\partial y'}{\partial z} dz


dz^' \equiv  \frac{\partial z'}{\partial t} dt+\frac{\partial z'}{\partial x} dx + \frac{\partial z'}{\partial y} dy+ \frac{\partial z'}{\partial z} dz


The Lorentz transformations are also invariant in that they are just a rotation, i.e. Det Λ=1. The inner product is preserved,


ΛμνημνΛνμ=ημν


[γ00γβ01000010γβ00γ][1000010000100001][γ00γβ01000010γβ00γ]T=[1000010000100001]


[γ2β2γ200001000010000γ2+β2γ2]=[1000010000100001]


[γ2(1β2)00001000010000γ2(1β2)]=[1000010000100001]


Where γ11β2


[γ2γ200001000010000γ2γ2]=[1000010000100001]



[1000010000100001]=[1000010000100001]