Difference between revisions of "Relativistic Differential Cross-section"
Jump to navigation
Jump to search
<\center>
Line 18: | Line 18: | ||
As shown earlier | As shown earlier | ||
− | <center><math>\ | + | The s quantity is known as the square of the center of mass energy (invariant mass) |
+ | <center><math>s \equiv \left({\mathbf P_1^*}+ {\mathbf P_2^{*}}\right)^2=\left({\mathbf P_1^{'*}}+ {\mathbf P_2^{'*}}\right)^2</math></center> | ||
− | |||
− | |||
+ | <center><math>s \equiv \mathbf P_1^{*2}+2 \mathbf P_1^* \mathbf P_2^*+ \mathbf P_2^{*2} \equiv \mathbf P_1^{'*2}+2 \mathbf P_1^{'* }\mathbf P_2^{'*}+ \mathbf P_2^{'*2}</math></center> | ||
+ | |||
+ | |||
+ | As shown earlier, the square of a 4-momentum is | ||
+ | |||
+ | |||
+ | <center><math>\mathbf P^{2} \equiv m^2</math></center> | ||
+ | |||
+ | This gives, | ||
+ | <center><math>s \equiv m_1^{2}+2 \mathbf P_1^* \mathbf P_2^*+ m_2^{2} \equiv m_1^{'2}+2 \mathbf P_1^{'*} \mathbf P_2^{'*}+ m_2^{'2}</math></center> | ||
+ | |||
+ | |||
+ | For the case <math>m_1=m_2=m</math> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>s \equiv 2m^{2}+2 \mathbf P_1^* \mathbf P_2^* \equiv 2m^{2}+2 \mathbf P_1^{'*} \mathbf P_2^{'*}</math></center> | ||
+ | |||
+ | Using the relationship | ||
+ | |||
+ | |||
+ | <center><math>\mathbf P_1 \cdot \mathbf P_2 = E_{1}E_{2}-(\vec p_1 \vec p_2)</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>s \equiv 2m^2+2(E_1^*E_2^*-\vec p \ _1^* \vec p \ _2^*)</math></center> | ||
+ | |||
+ | |||
+ | In the center of mass frame of reference, | ||
+ | |||
+ | <center><math>E_1^*=E_2^* \quad and \quad \vec p \ _1^*=-\vec p \ _2^*</math></center> | ||
+ | |||
+ | |||
+ | <center><math>s_{CM} \equiv 2m^2+2E_1^{*2}+2\vec p_1 \ ^{*2} </math></center> | ||
+ | |||
+ | |||
+ | Using the relativistic energy equation | ||
+ | |||
+ | <center><math>E^2 \equiv \vec p_1 \ ^2+m^2</math></center> | ||
+ | |||
+ | |||
+ | <center><math>s_{CM} \equiv 2m^2+2m^2+2\vec p_1 \ ^{*2}+\vec p_1 \ ^{*2})</math></center> | ||
+ | |||
+ | |||
+ | <center><math>s_{CM}=4(m^2+\vec p_1 \ ^{*2})=(2E_1^*)^{2}</math></center> | ||
− | |||
Revision as of 21:14, 3 July 2017
Relativistic Differential Cross-section
dQ is the invariant Lorentz phase space factor
and F is the flux of incoming particles
As shown earlier
The s quantity is known as the square of the center of mass energy (invariant mass)
As shown earlier, the square of a 4-momentum is
This gives,
For the case
Using the relationship
In the center of mass frame of reference,
Using the relativistic energy equation
The invariant form of F is
In the center of mass frame