Difference between revisions of "Relativistic Differential Cross-section"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
<center><math>d\sigma=\frac{1}{F}|\mathcal{M}|^2 dQ</math></center> | <center><math>d\sigma=\frac{1}{F}|\mathcal{M}|^2 dQ</math></center> | ||
− | dQ is the invariant Lorentz phase space factor | + | dQ is the invariant Lorentz phase space factor |
+ | <center><math>dQ=(2\pi)^4\delta^4(p_1 + p_2 - p_1^' - p_2^')\frac{d^3p_1^'}{(2π)^3 2E_1^'}\frac{d^3p_2^'}{(2π)^3 2E_2^'}</math></center> | ||
− | <center><math> | + | |
+ | and F is the flux of incoming particles | ||
+ | |||
+ | |||
+ | <center><math>F=2E_1 2E_2(|\vec {v}_1-\vec {v}_2|</math></center> | ||
+ | |||
+ | |||
+ | The invariant form of F is | ||
+ | |||
+ | |||
+ | <center><math>F=4\sqrt{(\vec {p}_1 \cdot \vec {p}_2)^2-(m_1m_2)^2}</math></center> | ||
<center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2</math></center> | <center><math>\frac{d\sigma}{d\Omega}=\frac{1}{64\pi^2 s} \frac{\mathbf p_f}{\mathbf p_i}|\mathcal {M}|^2</math></center> |
Revision as of 15:42, 1 July 2017
dQ is the invariant Lorentz phase space factor
and F is the flux of incoming particles
The invariant form of F is