Difference between revisions of "Relativistic Units"
Jump to navigation
Jump to search
Line 53: | Line 53: | ||
− | The Planck-Einstein relation and the de Broglie relation can be used to | + | The Planck-Einstein relation and the de Broglie relation can be used to substitute into the relativistic energy equation |
<center><math>E=\hbar \omega \qquad \qquad p=k \hbar</math></center> | <center><math>E=\hbar \omega \qquad \qquad p=k \hbar</math></center> | ||
+ | |||
+ | |||
+ | <center><math> \hbar^2 \omega^2 = m^2+k^2 \hbar^2</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | Since the units of <math>\omega =\frac{1}{time}\ </math> and the units of <math>k=\frac{1}{distance}</math> | ||
Revision as of 12:48, 29 June 2017
Relativistic Units
From the definition of 4-vectors shown earlier, we know that
The 4-vectors and 4-momenta are defined to be in units of distance and momentum and as such must be multiplied or divided respectively by the speed of light to meet this requirement. For simplicity, the units of c can be chosen to be 1. This implies:
The relativistic equation for energy
The Planck-Einstein relation and the de Broglie relation can be used to substitute into the relativistic energy equation
Since the units of
and the units of
in SI units is defined as:
Since c is already to be defined as equal to zero, this implies unit of mass must also be equal to one. By convention, the mass of the proton is used