Difference between revisions of "Differential Cross-Section"
Jump to navigation
Jump to search
Line 40: | Line 40: | ||
<center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left ( \frac{(4p^{*4}(1-\cos{\theta})^2+16E^{*4})}{4p^{*4}(1+\cos{\theta})^2}-\frac{32E^{*2}}{4p^{*4}(1+\cos{\theta})(1-\cos{\theta})}+\frac{(4p^{*4}(1+\cos{\theta})^2+16E^{*4})}{4p^{*4}(1-\cos{\theta})^2}\right )</math></center> | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}}\left ( \frac{(4p^{*4}(1-\cos{\theta})^2+16E^{*4})}{4p^{*4}(1+\cos{\theta})^2}-\frac{32E^{*2}}{4p^{*4}(1+\cos{\theta})(1-\cos{\theta})}+\frac{(4p^{*4}(1+\cos{\theta})^2+16E^{*4})}{4p^{*4}(1-\cos{\theta})^2}\right )</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\frac{d\sigma}{d\Omega}=\frac{\alpha ^2}{8E^{*2}4p^{*4}}\left ( \frac{(4p^{*4}(1-\cos{\theta})^2+16E^{*4})}{(1+\cos{\theta})^2}-\frac{32E^{*2}}{(1+\cos{\theta})(1-\cos{\theta})}+\frac{(4p^{*4}(1+\cos{\theta})^2+16E^{*4})}{(1-\cos{\theta})^2}\right )</math></center> |
Revision as of 01:51, 26 June 2017
Using the fine structure constant
In the center of mass frame the Mandelstam variables are given by: