Difference between revisions of "Initial CM Frame 4-momentum components"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 +
<center><math>\textbf{\underline{Navigation}}</math>
 +
 +
[[Limits_based_on_Mandelstam_Variables|<math>\vartriangleleft </math>]]
 +
[[VanWasshenova_Thesis#Initial_4-momentum_Components|<math>\triangle </math>]]
 +
[[Special_Case_of_Equal_Mass_Particles|<math>\vartriangleright </math>]]
 +
 +
</center>
 +
 +
 
=Initial CM Frame 4-momentum components=
 
=Initial CM Frame 4-momentum components=
  

Revision as of 22:29, 15 June 2017

\underline{Navigation}


Initial CM Frame 4-momentum components

400px-CMcopy.png
Figure 2: Definition of variables in the Center of Mass Frame


Starting with the definition for the total relativistic energy:


E2p2c2+m2c4


E2p2c2=(mc2)2

Since we can assume that the frame of reference is an inertial frame, it moves at a constant velocity, the mass should remain constant.


dpdt=0d(mv)dt=c dmdtdmdt=0


m=const


We can use 4-momenta vectors, i.e. P(Epxpypz)=(Ep) ,with c=1, to describe the variables in the CM Frame.


Using the fact that the scalar product of a 4-momenta with itself,


P1P1=PμgμνPν=(Epxpypz)(1000010000100001)(Epxpypz)


P1P1=E1E1p1p1=m21


is invariant.


Using this notation, the sum of two 4-momenta forms a 4-vector as well

P1+P2=(E1+E2p1+p2)=P

The length of this four-vector is an invariant as well

P2=(P1+P2)2=(E1+E2)2(p1+p2)2=(m1+m2)2=s