Difference between revisions of "4-momenta"
Jump to navigation
Jump to search
Line 75: | Line 75: | ||
<center><math>\mathbf (\mathbf P_1 +\mathbf P_2)^2 \equiv m_1^2+2 \mathbf P_1 \mathbf P_2+m_2^2</math></center> | <center><math>\mathbf (\mathbf P_1 +\mathbf P_2)^2 \equiv m_1^2+2 \mathbf P_1 \mathbf P_2+m_2^2</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\mathbf R_1 \cdot \mathbf R_2 = x_{0_1}x_{0_2}-(x_{1_1}x_{1_2}+x_{2_1}x_{2_2}+x_{3_1}x_{3_2})</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\mathbf P_1 \cdot \mathbf P_2 = p_{0_1}p_{0_2}-(p_{1_1}p_{1_2}+p_{2_1}p_{2_2}+p_{3_1}p_{3_2})</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\mathbf P_1 \cdot \mathbf P_2 = E_{1}E_{2}-(\vec p_1 \vec p_2)</math></center> | ||
Revision as of 22:04, 8 June 2017
4-momenta
As was previously shown for the space-time 4-vector, a similar 4-vector can be composed of momentum. Using index notation, the energy and momentum components can be combined into a single "4-vector"
, that has units of momentum(i.e. E/c is a distance).
As shown earlier,
Following the 4-vector of space-time for momentum-energy,
Using the relativistic equation for energy
A 4-momenta vector can be composed of different 4-momenta vectors,
This allows us to write
Using