Difference between revisions of "Limits based on Mandelstam Variables"
Jump to navigation
Jump to search
Line 35: | Line 35: | ||
==t Channel== | ==t Channel== | ||
− | <center><math> | + | <center><math>t \equiv \left({\mathbf P_1^*}- {\mathbf P_1^{'*}}\right)^2=\left({\mathbf P_2^{*}}+ {\mathbf P_2^{'*}}\right)^2</math></center> |
<center>[[File:400px-CMcopy.png]]</center> | <center>[[File:400px-CMcopy.png]]</center> | ||
Line 41: | Line 41: | ||
− | <center><math> | + | <center><math>t \equiv \left({\mathbf P_1^*}- {\mathbf P_1^{'*}}\right)^2</math></center> |
− | <center><math> | + | <center><math>t \equiv P_1^{*2}-2P_1^*P_1^{'*}+P_1^{'*2}</math></center> |
− | <center><math> | + | <center><math>t \equiv 2m_1^2-2E_1^*E_1^{'*}+2p_1^*p_1^{'*}</math></center> |
− | <center><math> | + | <center><math>t \equiv 2m_1^*-2E_1^{*2}+2p_1^{*2}cos\ \theta</math></center> |
− | <center><math> | + | <center><math>t \equiv -2p_1^{*2}(1-cos\ \theta)</math></center> |
==u Channel== | ==u Channel== |
Revision as of 16:41, 8 June 2017
Limits based on Mandelstam Variables
s Channel
In the center of mass frame, the momentum of the particles interacting are equal and opposite, i.e. . However, the 4-momentum still retains an energy component, which as a scalar quantity, can not be countered by another particle's direction of motion.
Similarly, by the relativistic definition of energy
where both particles have the same mass, this implies
t Channel