Difference between revisions of "Limits based on Mandelstam Variables"
Jump to navigation
Jump to search
Line 38: | Line 38: | ||
[[File:400px-CMcopy.png]] | [[File:400px-CMcopy.png]] | ||
+ | |||
+ | <center><math>{\mathbf P_1^*}\equiv \left(\begin{matrix} E_1\\ p_{x_1^*} \\ p_{y_1^*} \\ p_{z_1^*} \end{matrix} \right) \ \ \ \ {\mathbf P_1^{'*}}\equiv \left(\begin{matrix} E_1^{;*}\\ p_{x_2^{'*}} \\ p_{y_2^{'*}} \\ p_{z_2^{'*}} \end{matrix} \right)</math></center> | ||
==u Channel== | ==u Channel== |
Revision as of 16:30, 8 June 2017
Limits based on Mandelstam Variables
s Channel
In the center of mass frame, the momentum of the particles interacting are equal and opposite, i.e. . However, the 4-momentum still retains an energy component, which as a scalar quantity, can not be countered by another particle's direction of motion.
Similarly, by the relativistic definition of energy
where both particles have the same mass, this implies