Difference between revisions of "4-vectors"

From New IAC Wiki
Jump to navigation Jump to search
Line 76: Line 76:
  
 
Comes from the Minkowski metric
 
Comes from the Minkowski metric
 +
 +
<center><math>
 +
\begin{bmatrix}
 +
dx_0  & dx_1 & dx_2 & dx_3
 +
\end{bmatrix}\cdot
 +
\begin{bmatrix}
 +
1 & 0 & 0 & 0  \\
 +
0 &-1 & 0 & 0 \\
 +
0 & 0 & -1 & 0 \\
 +
0 & 0 & 0 & -1
 +
\end{bmatrix}\cdot
 +
\begin{bmatrix}
 +
dx^0  \\
 +
dx^1 \\
 +
dx^2 \\
 +
dx^3
 +
\end{bmatrix}
 +
</math></center>
 +
  
 
<center><math>
 
<center><math>
Line 84: Line 103:
 
0 & 0 & 0 & -1
 
0 & 0 & 0 & -1
 
\end{bmatrix}</math></center>
 
\end{bmatrix}</math></center>
 
  
 
Using the Lorentz transformations and the index notation,
 
Using the Lorentz transformations and the index notation,

Revision as of 03:22, 6 June 2017

[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

4-vectors

Using index notation, the time and space coordinates can be combined into a single "4-vector" [math]x^{\mu},\ \mu=0,\ 1,\ 2,\ 3[/math], that has units of length, i.e. ct is a distance.

[math]\begin{bmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{bmatrix}= \begin{bmatrix} ct \\ x \\ y \\ z \end{bmatrix}[/math]


We can express the space time interval using the index notation

[math](ds)^2\equiv c^2 dt^{'2}-dx^{'2}-dy^{'2}-dz^{'2}= c^2 dt^{2}-dx^2-dy^2-dz^2[/math]


[math](ds)^2\equiv (dx^0)^{'2}-(dx^1)^{'2}-(dx^2)^{'2}-(dx^3)^{'2}= (dx^0)^{2}-(dx^1)^2-(dx^2)^2-(dx^3)^2[/math]


Since [math]ds^2 [/math] is nothing more than a dot product of a vector with itself, we should expect the components of the indices to follow a similar relationship.


[math](ds)^2\equiv x_{\nu} x^{\mu}[/math]


[math](ds)^2\equiv \begin{bmatrix} dx_0 & -dx_1 & -dx_2 & -dx_3 \end{bmatrix} \cdot \begin{bmatrix} dx^0 \\ dx^1 \\ dx^2 \\ dx^3 \end{bmatrix}[/math]


[math](ds)^2 \equiv (dx^0)^{2}-(dx^1)^2-(dx^2)^2-(dx^3)^2=(dx^0)^{'2}-(dx^1)^{'2}-(dx^2)^{'2}-(dx^3)^{'2}[/math]


The change in signs in the covariant term,

[math]x_{\nu}= \begin{bmatrix} dx_0 & -dx_1 & -dx_2 & -dx_3 \end{bmatrix}[/math]

To the contravarient term

[math]x^{\mu}= \begin{bmatrix} dx^0 \\ dx^1 \\ dx^2 \\ dx^3 \end{bmatrix} [/math]


Comes from the Minkowski metric

[math] \begin{bmatrix} dx_0 & dx_1 & dx_2 & dx_3 \end{bmatrix}\cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 &-1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}\cdot \begin{bmatrix} dx^0 \\ dx^1 \\ dx^2 \\ dx^3 \end{bmatrix} [/math]


[math] \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 &-1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}[/math]

Using the Lorentz transformations and the index notation,

[math] \begin{cases} t'=\gamma (t-vz/c^2) \\ x'=x' \\ y'=y' \\ z'=\gamma (z-vt) \end{cases} [/math]


[math]\begin{bmatrix} x'^0 \\ x'^1 \\ x'^2\\ x'^3 \end{bmatrix}= \begin{bmatrix} \gamma (x^0-vx^3/c) \\ x^1 \\ x^2 \\ \gamma (x^3-vx^0) \end{bmatrix} = \begin{bmatrix} \gamma (x^0-\beta x^3) \\ x^1 \\ x^2 \\ \gamma (x^3-vx^0) \end{bmatrix}[/math]


Where [math]\beta \equiv \frac{v}{c}[/math]

This can be expressed in matrix form as

[math]\begin{bmatrix} x'^0 \\ x'^1 \\ x'^2\\ x'^3 \end{bmatrix}= \begin{bmatrix} \gamma & 0 & 0 & -\gamma \beta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\gamma \beta & 0 & 0 & \gamma \end{bmatrix} \cdot \begin{bmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{bmatrix}[/math]


Letting the indices run from 0 to 3, we can write

[math]x'^{\mu}=\sum_{\nu=0}^3 (\Lambda_{\nu}^{\mu})x^{\nu}[/math]


Where [math]\Lambda[/math] is the Lorentz transformation matrix for motion in the z direction.






[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]