Difference between revisions of "4-vectors"

From New IAC Wiki
Jump to navigation Jump to search
Line 52: Line 52:
 
\end{bmatrix}= (dx^0)^{2}-(dx^1)^2-(dx^2)^2-(dx^3)^2=(dx^0)^{'2}-(dx^1)^{'2}-(dx^2)^{'2}-(dx^3)^{'2}</math></center>
 
\end{bmatrix}= (dx^0)^{2}-(dx^1)^2-(dx^2)^2-(dx^3)^2=(dx^0)^{'2}-(dx^1)^{'2}-(dx^2)^{'2}-(dx^3)^{'2}</math></center>
  
 +
 +
The signs in the covariant term,
 +
<center><math>\begin{bmatrix}
 +
dx_0  & -dx_1 & -dx_2 & -dx_3
 +
\end{bmatrix}</math></center>
 +
 +
Comes from the Minkowski metric
 +
 +
<center><math>
 +
\begin{bmatrix}
 +
1 & 0 & 0 & 0  \\
 +
0 &-1 & 0 & 0 \\
 +
0 & 0 & -1 & 0 \\
 +
0 & 0 & 0 & -1
 +
\end{bmatrix}
  
  

Revision as of 02:41, 6 June 2017

\underline{Navigation}

4-vectors

Using index notation, the time and space coordinates can be combined into a single "4-vector" xμ, μ=0, 1, 2, 3, that has units of length, i.e. ct is a distance.

[x0x1x2x3]=[ctxyz]


We can express the space time interval using the index notation

(ds)2c2dt2dx2dy2dz2=c2dt2dx2dy2dz2


(ds)2(dx0)2(dx1)2(dx2)2(dx3)2=(dx0)2(dx1)2(dx2)2(dx3)2


Since ds2 is nothing more than a dot product of a vector with itself, we should expect the components of the indices to follow a similar relationship.


(ds)2[dx0dx1dx2dx3][dx0dx1dx2dx3]=(dx0)2(dx1)2(dx2)2(dx3)2=(dx0)2(dx1)2(dx2)2(dx3)2


The signs in the covariant term,

[dx0dx1dx2dx3]

Comes from the Minkowski metric

[1000010000100001]UsingtheLorentztransformationsandtheindexnotation,<center><math>{t=γ(tvz/c2)x=xy=yz=γ(zvt)


[x0x1x2x3]=[γ(x0vx3/c)x1x2γ(x3vx0)]=[γ(x0βx3)x1x2γ(x3vx0)]


Where βvc

This can be expressed in matrix form as

[x0x1x2x3]=[γ00γβ01000010γβ00γ][x0x1x2x3]


Letting the indices run from 0 to 3, we can write

xμ=3ν=0(Λμν)xν


Where Λ is the Lorentz transformation matrix for motion in the z direction.






\underline{Navigation}