Difference between revisions of "4-vectors"

From New IAC Wiki
Jump to navigation Jump to search
Line 69: Line 69:
  
  
<center><math>\Rightarrow s^2\equiv c^2 t^{'2}-x^{'2}-y^{'2}-z^{'2}= c^2 t^{2}-x^2-y^2-z^2</math></center>
 
  
 
+
<center><math>ds^2\equiv dx_0^{'2}-dx_1^{'2}-dx_2^{'2}-dx_3^{'2}= dx_0^{2}-dx_1^2-dx_2^2-dx_3^2</math></center>
<center><math>s^2\equiv x_0{'2}-x_1^{'2}-x_2^{'2}-x_3^{'2}= x_0^{2}-x_1^2-x_2^2-x_3^2</math></center>
 
 
----
 
----
  

Revision as of 17:10, 5 June 2017

\underline{Navigation}

4-vectors

Using index notation, the time and space coordinates can be combined into a single "4-vector" xμ, μ=0, 1, 2, 3, that has units of length, i.e. ct is a distance.

[x0x1x2x3]=[ctxyz]


Using the Lorentz transformations and the index notation,

{t=γ(tvz/c2)x=xy=yz=γ(zvt)


[x0x1x2x3]=[γ(x0vx3/c)x1x2γ(x3vx0)]=[γ(x0βx3)x1x2γ(x3vx0)]

Where βvc


We can express the space time interval using the index notation

ds2c2dt2dx2dy2dz2=c2dt2dx2dy2dz2


ds2dx20dx21dx22dx23=dx20dx21dx22dx23


\underline{Navigation}