Difference between revisions of "4-vectors"

From New IAC Wiki
Jump to navigation Jump to search
Line 62: Line 62:
  
 
Where <math>\beta \equiv \frac{v}{c}</math>
 
Where <math>\beta \equiv \frac{v}{c}</math>
 +
 +
 +
We can express the space time interval using the index notation
 +
 +
<center><math>ds^2\equiv c^2 dt^{'2}-dx^{'2}-dy^{'2}-dz^{'2}= c^2 dt^{2}-dx^2-dy^2-dz^2</math></center>
 +
 +
 +
<center><math>\Rightarrow s^2\equiv c^2 t^{'2}-x^{'2}-y^{'2}-z^{'2}= c^2 t^{2}-x^2-y^2-z^2</math></center>
 +
 +
 +
<center><math>s^2\equiv x_0{'2}-x_1^{'2}-x_2^{'2}-x_3^{'2}= x_0^{2}-x_1^2-x_2^2-x_3^2</math></center>
 
----
 
----
  

Revision as of 17:08, 5 June 2017

[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]

4-vectors

Using index notation, the time and space coordinates can be combined into a single "4-vector" [math]x^{\mu},\ \mu=0,\ 1,\ 2,\ 3[/math], that has units of length, i.e. ct is a distance.

[math]\begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}= \begin{bmatrix} ct \\ x \\ y \\ z \end{bmatrix}[/math]


Using the Lorentz transformations and the index notation,

[math] \begin{cases} t'=\gamma (t-vz/c^2) \\ x'=x' \\ y'=y' \\ z'=\gamma (z-vt) \end{cases} [/math]


[math]\begin{bmatrix} x_0' \\ x_1' \\ x_2 '\\ x_3' \end{bmatrix}= \begin{bmatrix} \gamma (x_0-vx_3/c) \\ x_1 \\ x_2 \\ \gamma (x_3-vx_0) \end{bmatrix} = \begin{bmatrix} \gamma (x_0-\beta x_3) \\ x_1 \\ x_2 \\ \gamma (x_3-vx_0) \end{bmatrix}[/math]

Where [math]\beta \equiv \frac{v}{c}[/math]


We can express the space time interval using the index notation

[math]ds^2\equiv c^2 dt^{'2}-dx^{'2}-dy^{'2}-dz^{'2}= c^2 dt^{2}-dx^2-dy^2-dz^2[/math]


[math]\Rightarrow s^2\equiv c^2 t^{'2}-x^{'2}-y^{'2}-z^{'2}= c^2 t^{2}-x^2-y^2-z^2[/math]


[math]s^2\equiv x_0{'2}-x_1^{'2}-x_2^{'2}-x_3^{'2}= x_0^{2}-x_1^2-x_2^2-x_3^2[/math]


[math]\textbf{\underline{Navigation}}[/math]

[math]\vartriangleleft [/math] [math]\triangle [/math] [math]\vartriangleright [/math]