Difference between revisions of "The Ellipse"

From New IAC Wiki
Jump to navigation Jump to search
Line 75: Line 75:
  
  
Performing an active rotation, we will rotate the equation for an ellipse in the frame of the DC to the frame of the wires .  In the frame of the DC, the ellipse is centered on the x' axis, with the intersection points not having a uniform spacing in the ellipse parameter.  In the frame of the wires, the ellipse is tilted <math>6^{\circ}</math> counterclockwise from the x'' axis, with the intersection points having a uniform spacing in the ellipse parameter.
+
 
 +
Performing an active rotation, we will rotate the equation for an ellipse in the frame of the DC to the frame of the wires .  In the frame of the DC, the ellipse is centered on the x' axis, with the intersection points not having a uniform spacing in the ellipse parameter.  In the frame of the wires, the ellipse is tilted <math>6^{\circ}</math> counterclockwise from the x'' axis, with the intersection points having a uniform spacing in the ellipse parameter.
 +
 
 +
 
  
  

Revision as of 17:45, 28 April 2017

Viewing the conic section [math]\phi[/math] maps out on the DC sector plane, we know that it follows an elliptical path centered on it's x axis. Performing a passive rotation on points in the DC section plane does not physically change the position in space, i.e. passive rotations only give the components in a new coordinate system. Once such a rotation has been performed, the equation describing these points must be done within that plane.

An ellipse centered at the origin can be expressed in the form

[math]\frac{x^2}{a^2}+\frac{y^2}{b^2}=1[/math]

For an ellipse not centered on the origin, but instead the point (h',k'), this expression becomes


[math]\frac{(x+h')^2}{a^2}+\frac{(y+k')^2}{b^2}=1[/math]


In the plane of the DC sector, this equation becomes


[math]\frac{(x'+\Delta a)^2}{a^2}+\frac{(y')^2}{b^2}=1[/math]

where the center of the ellipse is found at [math]\{\Delta a, 0\}[/math].


Switching to the frame of the wires, the ellipse is still centered at [math]\{\Delta a,0\}[/math] in the DC sector, with the semi-major axis lying on the x' axis. For a rotation in the y-x plane, this corresponds to a positive angle [math]\theta[/math], with the rotation matrix [math]R(\theta_{yx})[/math]. In the frame of the wires, this center point falls at


[math]\begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} cos\ 6^{\circ} & -sin\ 6^{\circ} & 0 \\ sin\ 6^{\circ} &cos\ 6^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix}\cdot \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}[/math]



[math]\begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} cos\ 6^{\circ} & -sin\ 6^{\circ} & 0 \\ sin\ 6^{\circ} &cos\ 6^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix}\cdot \begin{bmatrix} \Delta a \\ 0 \\ 0 \end{bmatrix}[/math]


[math]\begin{bmatrix} x'' \\ y'' \\ z'' \end{bmatrix}= \begin{bmatrix} \Delta a\ cos\ 6^{\circ} \\ \Delta a\ sin\ 6^{\circ} \\ 0 \end{bmatrix}[/math]


[math](x'', y'', z'')_{center} = (\Delta a\ cos\ 6^{\circ} , \Delta a\ sin\ 6^{\circ} , 0 )= (h'', k'', 0) [/math]



Performing an active rotation, we will rotate the equation for an ellipse in the frame of the DC to the frame of the wires . In the frame of the DC, the ellipse is centered on the x' axis, with the intersection points not having a uniform spacing in the ellipse parameter. In the frame of the wires, the ellipse is tilted [math]6^{\circ}[/math] counterclockwise from the x axis, with the intersection points having a uniform spacing in the ellipse parameter.



(x y z

)=(cos 6\[Degree] sin 6\[Degree] 0 -sin 6\[Degree] cos 6\[Degree] 0 0 0 1

) . (x' y' z'

)


(x y z

)=(x'cos 6\[Degree]+y' sin 6\[Degree] -x'sin 6\[Degree]+y'cos 6\[Degree] 0

)

Substituting this into the equation for an ellipse in the frame of the wires,

(x+h)^2/a^2+(y+k)^2/b^2=1


((x'+\[CapitalDelta]a Cos[6 \[Degree]])Cos[6 \[Degree]]+(y'+\[CapitalDelta]a Sin[6 \[Degree]])Sin[6 \[Degree]])^2/a^2+(-(x'+\[CapitalDelta]a Cos[6 \[Degree]])Sin[6 \[Degree]]+(y'+\[CapitalDelta]a Sin[6 \[Degree]])Cos[6 \[Degree]])^2/b^2=1

(x'Cos[6 \[Degree]]+\[CapitalDelta]a (Cos^2)[6 \[Degree]]+y'Sin[6 \[Degree]]+\[CapitalDelta]a (Sin^2)[6 \[Degree]])^2/a^2+(-x'Sin[6 \[Degree]]-\[CapitalDelta]a Cos[6 \[Degree]]Sin[6 \[Degree]]+y'Cos[6 \[Degree]]+\[CapitalDelta]a Sin[6 \[Degree]]Cos[6 \[Degree]])^2/b^2=1

(x'Cos[6 \[Degree]]+y'Sin[6 \[Degree]]+\[CapitalDelta]a (Cos^2)[6 \[Degree]]+\[CapitalDelta]a (Sin^2)[6 \[Degree]])^2/a^2+(-x'Sin[6 \[Degree]]+y'Cos[6 \[Degree]]+\[CapitalDelta]a Cos[6 \[Degree]]Sin[6 \[Degree]]-\[CapitalDelta]a Cos[6 \[Degree]]Sin[6 \[Degree]])^2/b^2=1

(x'Cos[6 \[Degree]]+y'Sin[6 \[Degree]]+\[CapitalDelta]a ((Cos^2)[6 \[Degree]]+ (Sin^2)[6 \[Degree]]))^2/a^2+(-x'Sin[6 \[Degree]]+y'Cos[6 \[Degree]]+\[CapitalDelta]a (Cos[6 \[Degree]]Sin[6 \[Degree]]-Cos[6 \[Degree]]Sin[6 \[Degree]]))^2/b^2=1

(x'Cos[6 \[Degree]]+y'Sin[6 \[Degree]]+\[CapitalDelta]a )^2/a^2+(-x'Sin[6 \[Degree]]+y'Cos[6 \[Degree]])^2/b^2=1