Difference between revisions of "Left Hand Wall"
Jump to navigation
Jump to search
Line 29: | Line 29: | ||
− | + | <center><math> | |
− | + | \begin{bmatrix} | |
− | + | x'' \\ | |
− | y'' | + | y'' \\ |
z'' | z'' | ||
− | + | \end{bmatrix}= | |
− | + | \begin{bmatrix} | |
− | sin 6\ | + | cos\ 6^{\circ} & -sin\ 6^{\circ} & 0 \\ |
− | 0 0 1 | + | sin\ 6^{\circ} & cos\ 6^{\circ} & 0 \\ |
− | + | 0 & 0 & 1 | |
− | + | \end{bmatrix} \cdot | |
− | + | \begin{bmatrix} | |
− | + | t\ cos\ 29.5^{\circ}+0.09156 \\ | |
− | + | -t\ sin\ 29.5^{\circ} \\ | |
− | + | z' | |
− | + | \end{bmatrix}</math></center> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | 0.09156 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | z' | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Revision as of 14:22, 28 April 2017
Parameterizing this
where the negative sign is applied to the sine function by the even odd relationships of cosine and sine, i.e. ( sin(-t)=-sin(t), cos(-t)=cos(t)) and the fact that the y component is in the 4th quadrant.
Using the equation for y we can solve for t
Substituting this into the expression for x