Difference between revisions of "Right Hand Wall"
Jump to navigation
Jump to search
Line 58: | Line 58: | ||
\end{bmatrix}= | \end{bmatrix}= | ||
\begin{bmatrix} | \begin{bmatrix} | ||
− | 0.09156\ cos\ 6^{\circ}+\t cos\ 6 ^{\circ}cos\ 29.5^{\circ}-t\ sin\ 6 ^{\circ}sin\ 29.5^{\circ}\\ | + | 0.09156\ cos\ 6^{\circ}+\t cos\ 6 ^{\circ}cos\ 29.5^{\circ}-t\ sin\ 6 ^{\circ}sin\ 29.5^{\circ} \\ |
− | t\ cos\ 6 ^{\circ}sin\ 29.5^{\circ}+0.09156\ sin\ 6^{\circ}+t\ cos\ 29.5^{\circ}sin\ 6^{\circ}\\ | + | t\ cos\ 6 ^{\circ}sin\ 29.5^{\circ}+0.09156\ sin\ 6^{\circ}+t\ cos\ 29.5^{\circ}sin\ 6^{\circ} \\ |
0 | 0 | ||
\end{bmatrix}</math></center> | \end{bmatrix}</math></center> |
Revision as of 03:26, 28 April 2017
This same process can be applied to the side walls for the detector. For the sidewalls, we have approximated them as lines following the equation
Parameterizing this
(x y z
)= (0.09156cos 6 \[Degree]+t (cos 6 \[Degree]cos 29.5\[Degree]- sin 6 \[Degree]sin 29.5\[Degree]) 0.09156 sin 6 \[Degree]+t (sin 6 \[Degree] cos 29.5\[Degree]+cos 6 \[Degree]sin 29.5\[Degree]) 0
)
Using the equation for y we can solve for t
Substituting this into the expression for x
rightRotated = ContourPlot[x2 == 1.401949 y + 0.077641, {y, -1, 1}, {x2, 0, 1.8}, Frame -> {True, True, False, False}, PlotLabel -> "Right side limit of DC as a function of X and Y", FrameLabel -> {"y (meters)", "x (meters)"}, ContourStyle -> Black, PlotLegends -> Automatic];