Difference between revisions of "Wire angle correspondance"

From New IAC Wiki
Jump to navigation Jump to search
Line 167: Line 167:
  
 
===Changing cell size===
 
===Changing cell size===
 +
Using Mathematica, a line can be fitted to the data collected on the wire number to angle theta correspondence.
  
In[57]:= data1={{1,4.79},{2,5.09},{78,29.79},{111,40.50},{112,40.82}}
 
  
Out[57]= {{1,4.79},{2,5.09},{78,29.79},{111,40.5},{112,40.82}}
+
Declaring the data set:
 +
<pre>
 +
In[1]:= data1={{1,4.79},{2,5.09},{78,29.79},{111,40.50},{112,40.82}}
 +
 
 +
Out[1]= {{1,4.79},{2,5.09},{78,29.79},{111,40.5},{112,40.82}}
 +
</pre>
 +
 
 +
 
 +
Testing for a linear fit:
 +
<pre>
 +
In[2]:= line1=Fit[data1,{1,x},x]
 +
 
 +
Out[2]= 4.69004 +0.323914 x
 +
</pre>
 +
 
 +
Testing for a quadratic fit:
 +
<pre>
 +
In[3]:= quad1=Fit[data1,{1,x,x^2},x]
 +
 
 +
Out[3]= 4.69669 +0.322347 x+0.0000143086 x^2
 +
</pre>
 +
 
 +
Testing for a polynomial of degree 3 fit:
 +
<pre>
 +
In[4]:= polynomial1=Fit[data1,{1,x,x^2,x^3},x]
 +
 
 +
Out[4]= 4.65523 +0.351087 x-0.000597139 x^2+3.20201*10^-6 x^3
 +
</pre>

Revision as of 18:42, 28 November 2016

Determining wire-theta correspondance

To associate the hits with the Moller scattering angle theta, the occupancy plots of the drift chamber hits by means of wire numbers and layer must be translated using the physical constraints of the detector. Using the data released for the DC:

DC: Drift Chambers(specs)


This gives the detector with a working range of 5 to 40 degrees in Theta for the lab frame, with a resolution of 1m radian.

This sets the lower limit:

51π radians180=.0872664626 radians


This sets the upper limit:

401π radians180=.698131700798 radians

Taking the difference,

.698131700798.0872664626 .61086523198 radians


Dividing by 112, we find

.61086523198112=.005454153912 radians 0.0055 radians

CED Verification

Using CED to verify the angle and wire correlation,


Zooming in on the view paralell to the direction of the wires in ced, we can examine the wire corresponding theta angle in the drift chamber.

ParallelWireZoom.png


Corresponding theta angles can be found for other wires, in Region 1, Superlayers 1 and 2.

Table 1: Superlayer 1 Wire-Angle Theta Correspondence in Degrees
Wire Number Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
1 4.79 5.03 4.98 5.22 5.16 5.40
2 5.09 5.33 5.27 5.51 5.45 5.69
78 29.79 29.93 29.74 29.88 29.69 29.83
111 40.50 40.59 40.36 40.44 40.21 40.29
112 40.82 40.90 40.67 40.75 40.52 40.60


Table 2: Superlayer 2 Wire-Angle Theta Correspondence in Degrees
Wire Number Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
1 4.79 5.03 4.98 5.22 5.16 5.40
2 5.09 5.33 5.27 5.51 5.45 5.69
78 29.79 29.93 29.74 29.88 29.70 29.84
111 40.51 40.59 40.36 40.44 40.22 40.30
112 40.82 40.90 40.67 40.75 40.52 40.60

Super Layer 1:Layer 1

Finding the difference between wires 1 and 2,

5.094.79wire number=.3wire number

Finding the difference between wires 111 and 112,

40.8240.50wire number=.32wire number


Examing the range limits for the angle theta:


Taking the difference of the upper and lower limits in theta,

40.824.79=36.03


Dividing by 112 wires, we find

36.03112 wires 0.322wire number

Changing cell size

Using Mathematica, a line can be fitted to the data collected on the wire number to angle theta correspondence.


Declaring the data set:

In[1]:= data1={{1,4.79},{2,5.09},{78,29.79},{111,40.50},{112,40.82}}

Out[1]= {{1,4.79},{2,5.09},{78,29.79},{111,40.5},{112,40.82}}


Testing for a linear fit:

In[2]:= line1=Fit[data1,{1,x},x]

Out[2]= 4.69004 +0.323914 x

Testing for a quadratic fit:

In[3]:= quad1=Fit[data1,{1,x,x^2},x]

Out[3]= 4.69669 +0.322347 x+0.0000143086 x^2

Testing for a polynomial of degree 3 fit:

In[4]:= polynomial1=Fit[data1,{1,x,x^2,x^3},x]

Out[4]= 4.65523 +0.351087 x-0.000597139 x^2+3.20201*10^-6 x^3