Difference between revisions of "Reconstructing Moller Events"

From New IAC Wiki
Jump to navigation Jump to search
Line 210: Line 210:
  
 
{| class="wikitable" align="center"
 
{| class="wikitable" align="center"
| style="background: gray"  | <math>p^*_{2(z)}=-\sqrt {(p^*_2)^2-(p^*_{2(x)})^2-(p^*_{2(y)})^2}</math>
+
| style="background: gray"  | <math>p^*_{2(z)}=\sqrt {(p^*_2)^2-(p^*_{2(x)})^2-(p^*_{2(y)})^2}</math>
 
|}
 
|}
  
 
We choose negative, since the incoming electron in the lab frame is traveling in the positive direction, and the Moller electron is initially at rest, which translates to negative motion in the CM frame.
 
  
  

Revision as of 15:22, 5 February 2016

Setup

Since we want to run for a evenly spaced energy range for Moller electrons, we will need to use some of the scattered electrons to help cover this range. A Moller scattering data file of 1E7 events has no Moller electrons with momentum over 5500 MeV. Since momentum is conserved, and the data is verified kinematicly verified, we can simply "switch" the data. This data can then be altered to have a certain number of different phi values for each energy to match the Moller cross section. This data can then be written to a LUND file, and compared to the previous calculations which did not factor in loss of initial energy.

Prepare Data

Using the existing Moller scattering data from a GEANT simulation of 4E7 incident electrons, a file of just scattered momentum components can be constructed using:

awk '{print $9, $10, $11, $16, $17, $18}' MollerScattering_NH3_Large.dat > Just_Scattered_Momentum.dat

Transfer to CM Frame

Center of Mass Frame

4-Momentum Invariants

CM.png
Figure 1: Definition of variables in the Center of Mass Frame


Starting with the definition for the total relativistic energy:


E2p2c2+m2c4


E2p2c2=(mc2)2

Since we can assume that the frame of reference is an inertial frame, it moves at a constant velocity, the mass should remain constant.


dpdt=0d(mv)dt=c dmdtdmdt=0


m=const


We can use 4-momenta vectors, i.e. P(Epxpypz)=(Ep) ,with c=1, to describe the variables in the CM Frame.


Using the fact that the scalar product of a 4-momenta with itself,


P1P1=PμgμνPν=(Epxpypz)(1000010000100001)(Epxpypz)


P1P1=E1E1p1p1=m21=s


is invariant.


Using this notation, the sum of two 4-momenta forms a 4-vector as well

P1+P2=(E1+E2p1+p2)=P

The length of this four-vector is an invariant as well

P2=(P1+P2)2=(E1+E2)2(p1+p2)2=(m1+m2)2=s

Equal masses

For incoming electrons moving only in the z-direction, we can write


P1+P2=(E1+E200p1(z)+p2(z))=P



We can perform a Lorentz transformation to the Center of Mass frame, with zero total momentum


(E1+E2000)=(γ00βγ01000010βγ00γ).(E1+E200p1(z)+p2(z))

Without knowing the values for gamma or beta, we can utalize the fact that lengths of the two 4-momenta are invariant

s=P2=(E1+E2)2(p 1+p 2)2=(m1+m2)2


s=P2=(E1+E2)2(p1+p2)2=(m1+m2)2


This gives,

(m1+m2)2=(m1+m2)2


Using the fact that

{m1=m2m1=m2

since the rest mass energy of the electrons remains the same in inertial frames.


Substituting, we find

(m1+m1)2=(m1+m1)2


2m1=2m1


m1=m1


m1=m1 ;m2=m2


This confirms that the mass remains constant between the frames of reference.



Total Energy in CM

Setting the lengths of the 4-momenta equal to each other,

P2=P2


we can use this for the collision of two particles of mass m. Since the total momentum is zero in the Center of Mass frame, we can express total energy in the center of mass frame as

(E^*_{1}+E^*_{2})^2-(\vec p\ ^*_{1}+\vec p\ ^*_{2})^2=s=(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2


(E^*)^2-(\vec p\ ^*)^2=(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2


(E^*)^2=(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2


E^*=\sqrt{(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2}


\left( \begin{matrix}E^*_{1}+E^*_{2}\\ p_{1(x)}^*+p_{2(x)}^* \\ p_{1(y)}^*+p_{2(y)}^* \\ p_{1(z)}^*+p_{2(z)}^*\end{matrix} \right)=\left(\begin{matrix}\gamma & 0 & 0 & -\beta \gamma\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta \gamma & 0 & 0 & \gamma \end{matrix} \right) . \left( \begin{matrix}E_{1}^'+E_{2}^'\\ p_{1(x)}^'+p_{2(x)}^' \\ p_{1(y)}^'+p_{2(y)}^' \\ p_{1(z)}^'+p_{2(z)}^'\end{matrix} \right)


\left( \begin{matrix}E^*_{1}+E^*_{2}\\ 0 \\ 0 \\ 0\end{matrix} \right)=\left(\begin{matrix}\gamma & 0 & 0 & -\beta \gamma\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta \gamma & 0 & 0 & \gamma \end{matrix} \right) . \left( \begin{matrix}E^'\\ p_{x}^' \\ p_{y}^' \\ p_{z}^'\end{matrix} \right)

By the definition of the CM Frame we know


\Longrightarrow\begin{cases}
E_2^*=\gamma(E_{2}^'+m)-\beta \gamma p_{2(z)}^' \\
p^*_{x}=p^'_{x}=0 \\
p^*_{y}=p^'_{y}=0 \\
p^*_{2(z)}=-\beta \gamma(E_{2}^'+m)+\gamma p_{2(z)}^'
\end{cases}


\Longrightarrow \begin{cases}
p_{1(x)}^'=-p_{2(x)}^' \\
p_{1(y)}^'=-p_{2(y)}^' 
\end{cases}


p=p1+p2=0p1=p2


E^*=\sqrt{(E_{1}^'+E_{2}^')^2-(\vec{p_{1}}^'+\vec {p_{2}}^')^2}


Using the relativistic definition of total energy:

E2p2+m2


E1=p21+m2


E1=p22+m2=(p1)2+m2=p21+m2


E=E1+E2E1=E2

Since the energies are equal, we use this fact to find the momenta


|p1|=|p2|=E21m2

Moller electron Center of Mass Frame

Relativistically, the x and y components remain the same in the conversion from the Lab frame to the Center of Mass frame, since the direction of motion is only in the z direction.


p2(x)p2(x)


p2(y)p2(y)


p2(z)=(p2)2(p2(x))2(p2(y))2



Redefining the components in simpler terms, we use the fact that

EE1+E2
2E2=2m(m+E1)


E2=m(m+E1)2


p2=E22m2

Initially, before the collision in the CM frame, p2 was in the negative z direction. After the collision, the direction should reverse to the positive z direction. This same switching of the momentum direction alters p1 as well.


Using \theta '_2=\arccos \left(\frac{p^'_{2(z)}}{p^'_{2}}\right)
θ2=arccos(p2(z)p2)

Determing Angles

Xz lab.png
Figure 2: Definition of Moller electron variables in the Lab Frame in the x-z plane.


\theta '_2\equiv \arccos \left(\frac{p^'_{2(z)}}{p^'_{2}}\right)
Xy lab.png
Figure 3: Definition of Moller electron variables in the Lab Frame in the x-y plane.


\phi '_2\equiv \arccos \left( \frac{p^'_{2(x) Lab}}{p^'_{2(xy)}} \right)


where p_{2(xy)}^'=\sqrt{(p_{2(x)}^')^2+(p^'_{2(y)})^2}


(p^'_{2(xy)})^2=(p^'_{2(x)})^2+(p^'_{2(y)})^2


and using p2=p2(x)+p2(y)+p2(z)


this gives (p^'_{2})^2=(p^'_{2(xy)})^2+(p^'_{2(z)})^2


(p2)2(p2(z))2=(p2(xy))2


\Longrightarrow p_{2(xy)}^'=\sqrt{(p^'_{2})^2-(p^'_{2(z)})^2}


which givesϕ2=arccos(p2(x)p 22p 22(z))
p2(x)=p 22p 22(z)cos(ϕ)


Similarly, using p22=p22(x)+p22(y)+p22(z)


p 22p 22(x)p 22(z)=p 22(y)
p2(y)=p 22p 22(x)p 22(z)

px and py results based on ϕ

Checking on the sign from the cosine results for ϕ2


We have the limiting range that ϕ must fall within:

πϕ2π Radians
Xy plane.png

Examining the signs of the components which make up the angle ϕ in the 4 quadrants which make up the xy plane:

For 0ϕ2π2 Radians
px=POSITIVE
py=NEGATIVE
For 0ϕ2π2 Radians
px=POSITIVE
py=POSITIVE
For π2ϕ2π Radians
px=NEGATIVE
py=NEGATIVE
For π2ϕ2π Radians
px=NEGATIVE
py=POSITIVE

Partial Check

Alter Phi Angles

Run for Necessary Amount to match Cross Section