Difference between revisions of "Scattering Cross Section"

From New IAC Wiki
Jump to navigation Jump to search
Line 22: Line 22:
  
  
This makes the total cross section a Lorentz invariant in that it is not effected by any relativistic transformations
+
This makes the total cross section a Lorentz invariant in that it is not effected by any relativistic transformations.
  
 
<center><math>\therefore\ \sigma_{CM}=\sigma_{Lab}</math></center>
 
<center><math>\therefore\ \sigma_{CM}=\sigma_{Lab}</math></center>
Line 36: Line 36:
  
  
 +
Expressing this in terms of the solid angle components,
  
 
<center><math>\frac{\partial ^2\sigma_{Lab}}{\partial p_{Lab}\,\partial \Omega_{Lab}}\partial p_{Lab}\,\sin{\theta_{Lab}}\,d\theta_{Lab}\,d\phi_{Lab}=\frac{d^2\sigma_{CM}}{dp_{CM}\, d\Omega_{CM}}dp_{CM}\, \sin{\theta_{CM}}\,d\theta_{CM}\,d\phi_{CM}</math></center>
 
<center><math>\frac{\partial ^2\sigma_{Lab}}{\partial p_{Lab}\,\partial \Omega_{Lab}}\partial p_{Lab}\,\sin{\theta_{Lab}}\,d\theta_{Lab}\,d\phi_{Lab}=\frac{d^2\sigma_{CM}}{dp_{CM}\, d\Omega_{CM}}dp_{CM}\, \sin{\theta_{CM}}\,d\theta_{CM}\,d\phi_{CM}</math></center>
Line 45: Line 46:
  
  
 
+
Thus,
 
<center><math>\Rightarrow\ d\phi_{Lab}=d\phi_{CM}</math></center>
 
<center><math>\Rightarrow\ d\phi_{Lab}=d\phi_{CM}</math></center>
  
  
 
+
Simplify our expression for the cross section gives:
 
<center><math>\frac{\partial ^2\sigma_{Lab}}{\partial p_{Lab}\,\partial \Omega_{Lab}} dp_{Lab}\,\sin{\theta_{Lab}}\,d\theta_{Lab}=\frac{\partial ^2\sigma_{CM}}{\partial p_{CM}\, \partial \Omega_{CM}}dp_{CM}\, \sin{\theta_{CM}}\,d\theta_{CM}</math></center>
 
<center><math>\frac{\partial ^2\sigma_{Lab}}{\partial p_{Lab}\,\partial \Omega_{Lab}} dp_{Lab}\,\sin{\theta_{Lab}}\,d\theta_{Lab}=\frac{\partial ^2\sigma_{CM}}{\partial p_{CM}\, \partial \Omega_{CM}}dp_{CM}\, \sin{\theta_{CM}}\,d\theta_{CM}</math></center>
  
Line 59: Line 60:
  
  
 
+
To give
 
<center><math>\frac{\partial ^2\sigma_{Lab}}{\partial p_{Lab}\,\partial \Omega_{Lab}} dp_{Lab}\,d(\cos{\theta_{Lab}})=\frac{\partial ^2\sigma_{CM}}{\partial p_{CM}\, \partial \Omega_{CM}}dp_{CM}\, d(\cos{\theta_{CM}})</math></center>
 
<center><math>\frac{\partial ^2\sigma_{Lab}}{\partial p_{Lab}\,\partial \Omega_{Lab}} dp_{Lab}\,d(\cos{\theta_{Lab}})=\frac{\partial ^2\sigma_{CM}}{\partial p_{CM}\, \partial \Omega_{CM}}dp_{CM}\, d(\cos{\theta_{CM}})</math></center>
  
Line 75: Line 76:
 
We can use the chain rule to find the transformation term on the right hand side:
 
We can use the chain rule to find the transformation term on the right hand side:
  
<center><math>\frac{\partial (p^*\,\cos{\theta^*)}}{\partial (p^*\theta^*\phi^*)} \frac{\partial (p^*\theta^*\phi^*)}{\partial (p^*_xp^*_yp^*_z)} \frac{\partial (p^*_xp^*_yp^*_z)}{\partial (p_xp_yp_z)} \frac{\partial (p_xp_yp_z)}{\partial (p\theta\phi)} \frac{\partial (p\theta\phi)}{\partial (p\,\cos{\theta})}=\frac{\partial (p^*\cos{\theta^*})}{\partial (p\cos{\theta})}</math></center>
+
<center><math>\frac{\partial (p^*\, \cos{\theta^*)}}{\partial (p^*\, \theta^*\, \phi^*)} \frac{\partial (p^*\, \theta^*\, \phi^*)}{\partial (p^*_x\, p^*_y\, p^*_z)} \frac{\partial (p^*_x\, p^*_y\, p^*_z)}{\partial (p_x\, p_y\, p_z)} \frac{\partial (p_x\, p_y\, p_z)}{\partial (p\, \theta\, \phi)} \frac{\partial (p\, \theta\, \phi)}{\partial (p\, \cos{\theta})}=\frac{\partial (p^*\, \cos{\theta^*})}{\partial (p\, \cos{\theta})}</math></center>
  
  
  
<center><math>\frac{\partial (p^*\cos{\theta^*})} {\partial (p^*\theta^*\phi^*)}=\frac{\partial p^* \sin{\theta^*} \partial \theta^* \partial \phi^*}{\partial p^*\partial \theta^*\partial \phi^*}=\sin{\theta^*}</math></center>
+
<center><math>\frac{\partial (p^*\, \cos{\theta^*})} {\partial (p^*\, \theta^*\phi^*)}=\frac{\partial p^*\, \sin{\theta^*} \, \partial \theta^* \, \partial \phi^*}{\partial p^*\, \partial \theta^*\, \partial \phi^*}=\sin{\theta^*}</math></center>
  
  
Line 85: Line 86:
  
  
<center><math>\frac{\partial (p\theta\phi)}{\partial (p\,\cos{\theta})}=\frac{1}{\sin{\theta}}</math></center>
+
<center><math>\frac{\partial (p\, \theta\, \phi)}{\partial (p\, \cos{\theta})}=\frac{1}{\sin{\theta}}</math></center>
  
  
Line 92: Line 93:
  
 
<center><math>\begin{cases}
 
<center><math>\begin{cases}
p_x=p\sin{\theta}\cos{\phi} \\
+
p_x=p\, \sin{\theta}\, \cos{\phi} \\
p_y=p\sin{\theta}\sin{\phi} \\
+
p_y=p\, \sin{\theta}\, \sin{\phi} \\
p_z=p\cos{\theta}
+
p_z=p\, \cos{\theta}
 
\end{cases}</math></center>
 
\end{cases}</math></center>
  
Line 111: Line 112:
 
This allows us to express the term:
 
This allows us to express the term:
  
<center><math>\frac{\partial (p^*\theta^*\phi^*)}{\partial (p^*_xp^*_yp^*_z)}=\biggl[\frac{\partial (p^*_xp^*_yp^*_z)}{\partial (p^*\theta^*\phi^*)}\biggr]^{-1}=\biggl[\frac{\partial (p^*\sin{\theta^*}\cos{\phi^*}p^*\sin{\theta^*}\sin{\phi^*}p^*\cos{\theta^*})}{\partial p^*\partial \theta^*\partial \phi^*}\biggr]^{-1}</math></center>
+
<center><math>\frac{\partial (p^*\, \theta^*\, \phi^*)}{\partial (p^*_x\, p^*_y\, p^*_z)}=\biggl[\frac{\partial (p^*_x\, p^*_y\, p^*_z)}{\partial (p^*\, \theta^*\, \phi^*)}\biggr]^{-1}=\biggl[\frac{\partial (p^*\, \sin{\theta^*}\, \cos{\phi^*}p^*\, \sin{\theta^*}\, \sin{\phi^*}p^*\, \cos{\theta^*})}{\partial p^*\, \partial \theta^*\, \partial \phi^*}\biggr]^{-1}</math></center>
  
  
<center><math>\frac{\partial (p^*\theta^*\phi^*)}{\partial (p^*_xp^*_yp^*_z)}=\biggl[ \frac{\partial p^{*-1}\cos{\theta^{*}}^{-1}} {\partial p\,d\theta^*}\biggr]=\frac{1}{p^{*2}\sin{\theta^*}}</math></center>
+
<center><math>\frac{\partial (p^*\, \theta^*\, \phi^*)}{\partial (p^*_x\, p^*_y\, p^*_z)}=\biggl[ \frac{d p^{*-1}\, d\cos{\theta^{*}}^{-1}} {d p\, d\theta^*}\biggr]=\frac{1}{p^{*2}\sin{\theta^*}}</math></center>
  
  
Line 120: Line 121:
  
  
<center><math>\frac{\partial (p_xp_yp_z)}{\partial (p\theta\phi)}=p^2\sin{\theta}</math></center>
+
<center><math>\frac{\partial (p_x\, p_y\, p_z)}{\partial (p\, \theta\, \phi)}=p^2\, \sin{\theta}</math></center>
  
  
Line 126: Line 127:
 
To find the middle component in the chain rule expansion,
 
To find the middle component in the chain rule expansion,
  
<center><math>\left( \begin{matrix} E^* \\ p^*_x \\ p^*_y \\ p^*_z\end{matrix} \right)=\left(\begin{matrix}\gamma^* & 0 & 0 & -\beta^* \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta^*\gamma^* & 0 & 0 & \gamma^* \end{matrix} \right) . \left( \begin{matrix}E\\ p_x \\ p_y\\ p_z\end{matrix} \right)</math></center>
+
<center><math>\left( \begin{matrix} E^* \\ p^*_x \\ p^*_y \\ p^*_z\end{matrix} \right)=\left(\begin{matrix}\gamma & 0 & 0 & -\beta \gamma\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta\gamma & 0 & 0 & \gamma \end{matrix} \right) . \left( \begin{matrix}E\\ p_x \\ p_y\\ p_z\end{matrix} \right)</math></center>
  
 
which gives,
 
which gives,
Line 132: Line 133:
  
 
<center><math>\Longrightarrow\begin{cases}
 
<center><math>\Longrightarrow\begin{cases}
E^*=\gamma^* E-\beta^* \gamma^* p_z \\
+
E^*=\gamma E-\beta \gamma^* p_z \\
p^*_z=-\beta^* \gamma^*E+\gamma^* p_z
+
p^*_z=-\beta \gamma\, E+\gamma\, p_z
 
\end{cases}</math></center>
 
\end{cases}</math></center>
  
  
<center><math>\frac{\partial (p^*_xp^*_yp^*_z)}{\partial (p_xp_yp_z)}=\frac{\partial p^*_z}{\partial p_z}=\frac{\partial (-\beta^* \gamma^*E+\gamma^* p_z)}{\partial p_z}=-\beta^* \gamma^*\frac{\partial E}{\partial p_z}+\gamma^*</math></center>
+
<center><math>\frac{\partial (p^*_x\, p^*_y\, p^*_z)}{\partial (p_x\, p_y\, p_z)}=\frac{\partial p^*_z}{\partial p_z}=\frac{\partial (-\beta \gamma\, E+\gamma\, p_z)}{\partial p_z}=-\beta \gamma \,\frac{\partial E}{\partial p_z}+\gamma</math></center>
  
  
Line 143: Line 144:
  
  
<center><math>E=\sqrt{p^2+m^2}=\sqrt{\sqrt{p_x^2+p_y^2+p_z^2}^2+m^2}</math></center>
+
<center><math>E=\sqrt{p^2+m^2}=\sqrt{p_x^2+p_y^2+p_z^2+m^2}</math></center>
  
  
  
<center><math>\Rightarrow \frac{\partial p^*_z}{\partial p_z}=\frac{\sqrt {\sqrt{p_x^2+p_y^2+p_z^2}^2+m^2}} {\partial p_z}=\frac{p_z}{\sqrt {\sqrt{p_x^2+p_y^2+p_z^2}^2+m^2}}=\frac{p_z}{E}</math></center>
+
<center><math>\Rightarrow \frac{\partial p^*_z}{\partial p_z}=\frac{\sqrt {p_x^2+p_y^2+p_z^2+m^2}} {\partial p_z}=\frac{p_z}{\sqrt {p_x^2+p_y^2+p_z^2+m^2}}=\frac{p_z}{E}</math></center>
  
  
  
<center><math>\frac{\partial p^*_z}{\partial p_z}=-\beta^* \gamma^*\frac{\partial E}{\partial p_z}+\gamma^*=-\beta^* \gamma^*\frac{p_z}{E}+\gamma^*</math></center>
+
<center><math>\frac{\partial p^*_z}{\partial p_z}=-\beta \gamma \frac{\partial E}{\partial p_z}+\gamma=-\beta \gamma \frac{p_z}{E}+\gamma</math></center>
  
  
 
Then using the fact that
 
Then using the fact that
<center><math>E^*=\gamma^* E-\beta^* \gamma^* p_z </math></center>
+
 
 +
<center><math>E^*\equiv \gamma E-\beta \gamma\, p_z </math></center>
  
  
  
<center><math>\frac{\partial p^*_z}{\partial p_z}=-\beta^* \gamma^*\frac{p_z}{E}+\frac{\gamma^*E}{E}=\frac{E^*}{E}</math></center>
+
<center><math>\frac{\partial p^*_z}{\partial p_z}=-\beta \gamma \frac{p_z}{E}+\frac{\gamma\, E}{E}=\frac{E^*}{E}</math></center>

Revision as of 17:40, 3 February 2016

Scattering Cross Section

Scattering.png


[math]\frac{d\sigma}{d\Omega} = \frac{\left(\frac{number\ of\ particles\ scattered/second}{d\Omega}\right)}{\left(\frac{number\ of\ incoming\ particles/second}{cm^2}\right)}=\frac{dN}{\mathcal L\, d\Omega} =differential\ scattering\ cross\ section[/math]


[math]where\ d\Omega=\sin{\theta}\,d\theta\,d\phi[/math]


[math]\Rightarrow \sigma=\int\limits_{\theta=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \left(\frac{d\sigma}{d\Omega}\right)\ \sin{\theta}\,d\theta\,d\phi =\frac{N}{\mathcal L}\equiv total\ scattering\ cross\ section[/math]

Since this is just a ratio of detected particles to total particles, this gives the cross section as a relative probablity of a scattering, or reaction, to occur.

Transforming Cross Section Between Frames

Transforming the cross section between two different frames of reference has the condition that the quantity must be equal in both frames. This is due to the fact that

[math]\sigma=\frac{N}{\mathcal L}=constant\ number[/math]


This makes the total cross section a Lorentz invariant in that it is not effected by any relativistic transformations.

[math]\therefore\ \sigma_{CM}=\sigma_{Lab}[/math]


This implies that the number of particles going into the solid-angle element d ΩLab and having a momentum between pLab and pLab+dpLabbe the same as the number going into the corresponding solid-angle element CM and having a corresponding momentum between pCM and pCM+dpCM


[math]\frac{\partial ^2\sigma_{Lab}}{\partial p_{Lab}\,\partial \Omega_{Lab}}dp_{Lab}\,d\Omega_{Lab}=\frac{\partial ^2\sigma_{CM}}{\partial p_{CM}\,\partial \Omega_{CM}}dp_{CM}\, d\Omega_{CM}[/math]


[math]where\ d\Omega=\sin{\theta}\,d\theta\,d\phi[/math]


Expressing this in terms of the solid angle components,

[math]\frac{\partial ^2\sigma_{Lab}}{\partial p_{Lab}\,\partial \Omega_{Lab}}\partial p_{Lab}\,\sin{\theta_{Lab}}\,d\theta_{Lab}\,d\phi_{Lab}=\frac{d^2\sigma_{CM}}{dp_{CM}\, d\Omega_{CM}}dp_{CM}\, \sin{\theta_{CM}}\,d\theta_{CM}\,d\phi_{CM}[/math]


As shown earlier,

[math]\phi_{Lab}=\phi_{CM}[/math]


Thus,

[math]\Rightarrow\ d\phi_{Lab}=d\phi_{CM}[/math]


Simplify our expression for the cross section gives:

[math]\frac{\partial ^2\sigma_{Lab}}{\partial p_{Lab}\,\partial \Omega_{Lab}} dp_{Lab}\,\sin{\theta_{Lab}}\,d\theta_{Lab}=\frac{\partial ^2\sigma_{CM}}{\partial p_{CM}\, \partial \Omega_{CM}}dp_{CM}\, \sin{\theta_{CM}}\,d\theta_{CM}[/math]


We can use the fact that

[math]\sin{\theta}\ d\theta=d(\cos{\theta})[/math]


To give

[math]\frac{\partial ^2\sigma_{Lab}}{\partial p_{Lab}\,\partial \Omega_{Lab}} dp_{Lab}\,d(\cos{\theta_{Lab}})=\frac{\partial ^2\sigma_{CM}}{\partial p_{CM}\, \partial \Omega_{CM}}dp_{CM}\, d(\cos{\theta_{CM}})[/math]



[math]\frac{\partial ^2\sigma_{Lab}}{\partial p_{Lab}\,\partial \Omega_{Lab}} =\frac{\partial ^2\sigma_{CM}}{\partial p_{CM}\, \partial \Omega_{CM}} \frac{dp_{CM}\,d(\cos{\theta_{CM}})}{dp_{Lab}\,d(\cos{\theta_{Lab}})}[/math]


[math]\frac{\partial ^2\sigma_{Lab}}{\partial p_{Lab}\,\partial \Omega_{Lab}} =\frac{\partial ^2\sigma_{CM}}{\partial p_{CM}\, \partial \Omega_{CM}} \frac{\partial (p_{CM}\,\cos{\theta_{CM})}}{\partial (p_{Lab}\,\cos{\theta_{Lab}})}[/math]


We can use the chain rule to find the transformation term on the right hand side:

[math]\frac{\partial (p^*\, \cos{\theta^*)}}{\partial (p^*\, \theta^*\, \phi^*)} \frac{\partial (p^*\, \theta^*\, \phi^*)}{\partial (p^*_x\, p^*_y\, p^*_z)} \frac{\partial (p^*_x\, p^*_y\, p^*_z)}{\partial (p_x\, p_y\, p_z)} \frac{\partial (p_x\, p_y\, p_z)}{\partial (p\, \theta\, \phi)} \frac{\partial (p\, \theta\, \phi)}{\partial (p\, \cos{\theta})}=\frac{\partial (p^*\, \cos{\theta^*})}{\partial (p\, \cos{\theta})}[/math]


[math]\frac{\partial (p^*\, \cos{\theta^*})} {\partial (p^*\, \theta^*\phi^*)}=\frac{\partial p^*\, \sin{\theta^*} \, \partial \theta^* \, \partial \phi^*}{\partial p^*\, \partial \theta^*\, \partial \phi^*}=\sin{\theta^*}[/math]


Similarly,


[math]\frac{\partial (p\, \theta\, \phi)}{\partial (p\, \cos{\theta})}=\frac{1}{\sin{\theta}}[/math]


Using the conversion of cartesian to spherical coordinates we know:

[math]\begin{cases} p_x=p\, \sin{\theta}\, \cos{\phi} \\ p_y=p\, \sin{\theta}\, \sin{\phi} \\ p_z=p\, \cos{\theta} \end{cases}[/math]


and the fact that as was shown earlier, that


[math]\begin{cases} p^*_x=p_x \\ p^*_y=p_y \\ \phi^*=\phi \end{cases}[/math]


This allows us to express the term:

[math]\frac{\partial (p^*\, \theta^*\, \phi^*)}{\partial (p^*_x\, p^*_y\, p^*_z)}=\biggl[\frac{\partial (p^*_x\, p^*_y\, p^*_z)}{\partial (p^*\, \theta^*\, \phi^*)}\biggr]^{-1}=\biggl[\frac{\partial (p^*\, \sin{\theta^*}\, \cos{\phi^*}p^*\, \sin{\theta^*}\, \sin{\phi^*}p^*\, \cos{\theta^*})}{\partial p^*\, \partial \theta^*\, \partial \phi^*}\biggr]^{-1}[/math]


[math]\frac{\partial (p^*\, \theta^*\, \phi^*)}{\partial (p^*_x\, p^*_y\, p^*_z)}=\biggl[ \frac{d p^{*-1}\, d\cos{\theta^{*}}^{-1}} {d p\, d\theta^*}\biggr]=\frac{1}{p^{*2}\sin{\theta^*}}[/math]


Again, similarly


[math]\frac{\partial (p_x\, p_y\, p_z)}{\partial (p\, \theta\, \phi)}=p^2\, \sin{\theta}[/math]


To find the middle component in the chain rule expansion,

[math]\left( \begin{matrix} E^* \\ p^*_x \\ p^*_y \\ p^*_z\end{matrix} \right)=\left(\begin{matrix}\gamma & 0 & 0 & -\beta \gamma\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta\gamma & 0 & 0 & \gamma \end{matrix} \right) . \left( \begin{matrix}E\\ p_x \\ p_y\\ p_z\end{matrix} \right)[/math]

which gives,


[math]\Longrightarrow\begin{cases} E^*=\gamma E-\beta \gamma^* p_z \\ p^*_z=-\beta \gamma\, E+\gamma\, p_z \end{cases}[/math]


[math]\frac{\partial (p^*_x\, p^*_y\, p^*_z)}{\partial (p_x\, p_y\, p_z)}=\frac{\partial p^*_z}{\partial p_z}=\frac{\partial (-\beta \gamma\, E+\gamma\, p_z)}{\partial p_z}=-\beta \gamma \,\frac{\partial E}{\partial p_z}+\gamma[/math]


We can use the relativistic definition of the total Energy,


[math]E=\sqrt{p^2+m^2}=\sqrt{p_x^2+p_y^2+p_z^2+m^2}[/math]


[math]\Rightarrow \frac{\partial p^*_z}{\partial p_z}=\frac{\sqrt {p_x^2+p_y^2+p_z^2+m^2}} {\partial p_z}=\frac{p_z}{\sqrt {p_x^2+p_y^2+p_z^2+m^2}}=\frac{p_z}{E}[/math]


[math]\frac{\partial p^*_z}{\partial p_z}=-\beta \gamma \frac{\partial E}{\partial p_z}+\gamma=-\beta \gamma \frac{p_z}{E}+\gamma[/math]


Then using the fact that

[math]E^*\equiv \gamma E-\beta \gamma\, p_z [/math]


[math]\frac{\partial p^*_z}{\partial p_z}=-\beta \gamma \frac{p_z}{E}+\frac{\gamma\, E}{E}=\frac{E^*}{E}[/math]