Difference between revisions of "Scattering Cross Section"

From New IAC Wiki
Jump to navigation Jump to search
Line 30: Line 30:
  
  
<center><math>\frac{d^2\sigma_{Lab}}{dp_{Lab}\,d\Omega_{Lab}}dp_{Lab}\,d\Omega_{Lab}=\frac{d^2\sigma_{CM}}{dp_{CM}\, d\Omega_{CM}}dp_{CM}\, d\Omega_{CM}</math></center>
+
<center><math>\frac{\partial^2\sigma_{Lab}}{\partialp_{Lab}\,\partial\Omega_{Lab}}dp_{Lab}\,d\Omega_{Lab}=\frac{\partial^2\sigma_{CM}}{\partialp_{CM}\,\partial\Omega_{CM}}dp_{CM}\, d\Omega_{CM}</math></center>
  
  
Line 37: Line 37:
  
  
<center><math>\frac{d^2\sigma_{Lab}}{dp_{Lab}\,d\Omega_{Lab}}dp_{Lab}\,\sin{\theta_{Lab}}\,d\theta_{Lab}\,d\phi_{Lab}=\frac{d^2\sigma_{CM}}{dp_{CM}\, d\Omega_{CM}}dp_{CM}\, \sin{\theta_{CM}}\,d\theta_{CM}\,d\phi_{CM}</math></center>
+
<center><math>\frac{\partial^2\sigma_{Lab}}{\partialp_{Lab}\,\partial\Omega_{Lab}}\partialp_{Lab}\,\sin{\theta_{Lab}}\,d\theta_{Lab}\,d\phi_{Lab}=\frac{d^2\sigma_{CM}}{dp_{CM}\, d\Omega_{CM}}dp_{CM}\, \sin{\theta_{CM}}\,d\theta_{CM}\,d\phi_{CM}</math></center>
  
  
Line 50: Line 50:
  
  
<center><math>\frac{d^2\sigma_{Lab}}{dp_{Lab}\,d\Omega_{Lab}} dp_{Lab}\,\sin{\theta_{Lab}}\,d\theta_{Lab}=\frac{d^2\sigma_{CM}}{dp_{CM}\, d\Omega_{CM}}dp_{CM}\, \sin{\theta_{CM}}\,d\theta_{CM}</math></center>
+
<center><math>\frac{\partial^2\sigma_{Lab}}{\partialp_{Lab}\,\partial\Omega_{Lab}} dp_{Lab}\,\sin{\theta_{Lab}}\,d\theta_{Lab}=\frac{\partial^2\sigma_{CM}}{\partialp_{CM}\, \partial\Omega_{CM}}dp_{CM}\, \sin{\theta_{CM}}\,d\theta_{CM}</math></center>
  
  
Line 60: Line 60:
  
  
<center><math>\frac{d^2\sigma_{Lab}}{dp_{Lab}\,d\Omega_{Lab}} dp_{Lab}\,d(\cos{\theta_{Lab}})=\frac{d^2\sigma_{CM}}{dp_{CM}\, d\Omega_{CM}}dp_{CM}\, d(\cos{\theta_{CM}})</math></center>
+
<center><math>\frac{\partial^2\sigma_{Lab}}{\partialp_{Lab}\,\partial\Omega_{Lab}} dp_{Lab}\,d(\cos{\theta_{Lab}})=\frac{\partial^2\sigma_{CM}}{\partialp_{CM}\, \partial\Omega_{CM}}dp_{CM}\, d(\cos{\theta_{CM}})</math></center>
  
  
  
  
<center><math>\frac{d^2\sigma_{Lab}}{dp_{Lab}\,d\Omega_{Lab}} =\frac{d^2\sigma_{CM}}{dp_{CM}\, d\Omega_{CM}} \frac{dp_{CM}\,d(\cos{\theta_{CM}})}{dp_{Lab}\,d(\cos{\theta_{Lab}})}</math></center>
+
<center><math>\frac{\partial^2\sigma_{Lab}}{\partialp_{Lab}\,\partial\Omega_{Lab}} =\frac{\partial^2\sigma_{CM}}{\partialp_{CM}\, \partial\Omega_{CM}} \frac{dp_{CM}\,d(\cos{\theta_{CM}})}{dp_{Lab}\,d(\cos{\theta_{Lab}})}</math></center>
  
  
  
<center><math>\frac{d^2\sigma_{Lab}}{dp_{Lab}\,d\Omega_{Lab}} =\frac{d^2\sigma_{CM}}{dp_{CM}\, d\Omega_{CM}} \frac{d(p_{CM}\,\cos{\theta_{CM})}}{d(p_{Lab}\,\cos{\theta_{Lab}})}</math></center>
+
<center><math>\frac{\partial^2\sigma_{Lab}}{\partialp_{Lab}\,\partial\Omega_{Lab}} =\frac{\partial^2\sigma_{CM}}{\partialp_{CM}\, \partial\Omega_{CM}} \frac{\partial(p_{CM}\,\cos{\theta_{CM})}}{\partial(p_{Lab}\,\cos{\theta_{Lab}})}</math></center>
  
  
Line 75: Line 75:
 
We can use the chain rule to find the transformation term on the right hand side:
 
We can use the chain rule to find the transformation term on the right hand side:
  
<center><math>\frac{d(p^*\,\cos{\theta^*)}}{d(p^*\theta^*\phi^*)} \frac{d(p^*\theta^*\phi^*)}{d(p^*_xp^*_yp^*_z)} \frac{d(p^*_xp^*_yp^*_z)}{d(p_xp_yp_z)} \frac{d(p_xp_yp_z)}{d(p\theta\phi)} \frac{d(p\theta\phi)}{d(p\,\cos{\theta})}=\frac{d(p^*\cos{\theta^*})}{d(p\cos{\theta})}</math></center>
+
<center><math>\frac{\partial(p^*\,\cos{\theta^*)}}{\partial(p^*\theta^*\phi^*)} \frac{\partial(p^*\theta^*\phi^*)}{\partial(p^*_xp^*_yp^*_z)} \frac{\partial(p^*_xp^*_yp^*_z)}{\partial(p_xp_yp_z)} \frac{\partial(p_xp_yp_z)}{\partial(p\theta\phi)} \frac{\partial(p\theta\phi)}{\partial(p\,\cos{\theta})}=\frac{\partial(p^*\cos{\theta^*})}{\partial(p\cos{\theta})}</math></center>
  
  
  
<center><math>\frac{d(p^*\cos{\theta^*})} {d(p^*\theta^*\phi^*)}=\frac{dp^* \sin{\theta^*} d\theta^* d\phi^*}{dp^*d\theta^*d\phi^*}=\sin{\theta^*}</math></center>
+
<center><math>\frac{\partial(p^*\cos{\theta^*})} {\partial(p^*\theta^*\phi^*)}=\frac{\partialp^* \sin{\theta^*} \partial\theta^* \partial\phi^*}{\partialp^*\partial\theta^*\partial\phi^*}=\sin{\theta^*}</math></center>
  
  
Line 85: Line 85:
  
  
<center><math>\frac{d(p\theta\phi)}{d(p\,\cos{\theta})}=\frac{1}{\sin{\theta}}</math></center>
+
<center><math>\frac{\partial(p\theta\phi)}{\partial(p\,\cos{\theta})}=\frac{1}{\sin{\theta}}</math></center>
  
  
Line 111: Line 111:
 
This allows us to express the term:
 
This allows us to express the term:
  
<center><math>\frac{d(p^*\theta^*\phi^*)}{d(p^*_xp^*_yp^*_z)}=\biggl[\frac{d(p^*_xp^*_yp^*_z)}{d(p^*\theta^*\phi^*)}\biggr]^{-1}=\biggl[\frac{d(p^*\sin{\theta^*}\cos{\phi^*}p^*\sin{\theta^*}\sin{\phi^*}p^*\cos{\theta^*})}{dp^*d\theta^*d\phi^*}\biggr]^{-1}</math></center>
+
<center><math>\frac{\partial(p^*\theta^*\phi^*)}{\partial(p^*_xp^*_yp^*_z)}=\biggl[\frac{\partial(p^*_xp^*_yp^*_z)}{\partial(p^*\theta^*\phi^*)}\biggr]^{-1}=\biggl[\frac{\partial(p^*\sin{\theta^*}\cos{\phi^*}p^*\sin{\theta^*}\sin{\phi^*}p^*\cos{\theta^*})}{\partialp^*\partial\theta^*\partial\phi^*}\biggr]^{-1}</math></center>
  
  
<center><math>\frac{d(p^*\theta^*\phi^*)}{d(p^*_xp^*_yp^*_z)}=\biggl[ \frac{dp^{*-1}\cos{\theta^{*}}^{-1}} {dp\,d\theta^*}\biggr]=\frac{1}{p^{*2}\sin{\theta^*}}</math></center>
+
<center><math>\frac{\partial(p^*\theta^*\phi^*)}{\partial(p^*_xp^*_yp^*_z)}=\biggl[ \frac{\partialp^{*-1}\cos{\theta^{*}}^{-1}} {\partialp\,d\theta^*}\biggr]=\frac{1}{p^{*2}\sin{\theta^*}}</math></center>
  
  
Line 120: Line 120:
  
  
<center><math>\frac{d(p_xp_yp_z)}{d(p\theta\phi)}=p^2\sin{\theta}</math></center>
+
<center><math>\frac{\partial(p_xp_yp_z)}{\partial(p\theta\phi)}=p^2\sin{\theta}</math></center>
  
  
Line 137: Line 137:
  
  
<center><math>\frac{d(p^*_xp^*_yp^*_z)}{d(p_xp_yp_z)}=\frac{dp^*_z}{dp_z}=\frac{d(-\beta^* \gamma^*E+\gamma^* p_z)}{dp_z}=-\beta^* \gamma^*\frac{dE}{dp_z}+\gamma^*</math></center>
+
<center><math>\frac{\partial(p^*_xp^*_yp^*_z)}{\partial(p_xp_yp_z)}=\frac{\partialp^*_z}{\partialp_z}=\frac{\partial(-\beta^* \gamma^*E+\gamma^* p_z)}{\partialp_z}=-\beta^* \gamma^*\frac{\partialE}{\partialp_z}+\gamma^*</math></center>

Revision as of 14:31, 3 February 2016

Scattering Cross Section

Scattering.png


[math]\frac{d\sigma}{d\Omega} = \frac{\left(\frac{number\ of\ particles\ scattered/second}{d\Omega}\right)}{\left(\frac{number\ of\ incoming\ particles/second}{cm^2}\right)}=\frac{dN}{\mathcal L\, d\Omega} =differential\ scattering\ cross\ section[/math]


[math]where\ d\Omega=\sin{\theta}\,d\theta\,d\phi[/math]


[math]\Rightarrow \sigma=\int\limits_{\theta=0}^{\pi} \int\limits_{\phi=0}^{2\pi} \left(\frac{d\sigma}{d\Omega}\right)\ \sin{\theta}\,d\theta\,d\phi =\frac{N}{\mathcal L}\equiv total\ scattering\ cross\ section[/math]

Since this is just a ratio of detected particles to total particles, this gives the cross section as a relative probablity of a scattering, or reaction, to occur.

Transforming Cross Section Between Frames

Transforming the cross section between two different frames of reference has the condition that the quantity must be equal in both frames. This is due to the fact that

[math]\sigma=\frac{N}{\mathcal L}=constant\ number[/math]


This makes the total cross section a Lorentz invariant in that it is not effected by any relativistic transformations

[math]\therefore\ \sigma_{CM}=\sigma_{Lab}[/math]


This implies that the number of particles going into the solid-angle element d ΩLab and having a momentum between pLab and pLab+dpLabbe the same as the number going into the corresponding solid-angle element CM and having a corresponding momentum between pCM and pCM+dpCM


[math]\frac{\partial^2\sigma_{Lab}}{\partialp_{Lab}\,\partial\Omega_{Lab}}dp_{Lab}\,d\Omega_{Lab}=\frac{\partial^2\sigma_{CM}}{\partialp_{CM}\,\partial\Omega_{CM}}dp_{CM}\, d\Omega_{CM}[/math]


[math]where\ d\Omega=\sin{\theta}\,d\theta\,d\phi[/math]


[math]\frac{\partial^2\sigma_{Lab}}{\partialp_{Lab}\,\partial\Omega_{Lab}}\partialp_{Lab}\,\sin{\theta_{Lab}}\,d\theta_{Lab}\,d\phi_{Lab}=\frac{d^2\sigma_{CM}}{dp_{CM}\, d\Omega_{CM}}dp_{CM}\, \sin{\theta_{CM}}\,d\theta_{CM}\,d\phi_{CM}[/math]


As shown earlier,

[math]\phi_{Lab}=\phi_{CM}[/math]


[math]\Rightarrow\ d\phi_{Lab}=d\phi_{CM}[/math]


[math]\frac{\partial^2\sigma_{Lab}}{\partialp_{Lab}\,\partial\Omega_{Lab}} dp_{Lab}\,\sin{\theta_{Lab}}\,d\theta_{Lab}=\frac{\partial^2\sigma_{CM}}{\partialp_{CM}\, \partial\Omega_{CM}}dp_{CM}\, \sin{\theta_{CM}}\,d\theta_{CM}[/math]


We can use the fact that

[math]\sin{\theta}\ d\theta=d(\cos{\theta})[/math]


[math]\frac{\partial^2\sigma_{Lab}}{\partialp_{Lab}\,\partial\Omega_{Lab}} dp_{Lab}\,d(\cos{\theta_{Lab}})=\frac{\partial^2\sigma_{CM}}{\partialp_{CM}\, \partial\Omega_{CM}}dp_{CM}\, d(\cos{\theta_{CM}})[/math]



[math]\frac{\partial^2\sigma_{Lab}}{\partialp_{Lab}\,\partial\Omega_{Lab}} =\frac{\partial^2\sigma_{CM}}{\partialp_{CM}\, \partial\Omega_{CM}} \frac{dp_{CM}\,d(\cos{\theta_{CM}})}{dp_{Lab}\,d(\cos{\theta_{Lab}})}[/math]


[math]\frac{\partial^2\sigma_{Lab}}{\partialp_{Lab}\,\partial\Omega_{Lab}} =\frac{\partial^2\sigma_{CM}}{\partialp_{CM}\, \partial\Omega_{CM}} \frac{\partial(p_{CM}\,\cos{\theta_{CM})}}{\partial(p_{Lab}\,\cos{\theta_{Lab}})}[/math]


We can use the chain rule to find the transformation term on the right hand side:

[math]\frac{\partial(p^*\,\cos{\theta^*)}}{\partial(p^*\theta^*\phi^*)} \frac{\partial(p^*\theta^*\phi^*)}{\partial(p^*_xp^*_yp^*_z)} \frac{\partial(p^*_xp^*_yp^*_z)}{\partial(p_xp_yp_z)} \frac{\partial(p_xp_yp_z)}{\partial(p\theta\phi)} \frac{\partial(p\theta\phi)}{\partial(p\,\cos{\theta})}=\frac{\partial(p^*\cos{\theta^*})}{\partial(p\cos{\theta})}[/math]


[math]\frac{\partial(p^*\cos{\theta^*})} {\partial(p^*\theta^*\phi^*)}=\frac{\partialp^* \sin{\theta^*} \partial\theta^* \partial\phi^*}{\partialp^*\partial\theta^*\partial\phi^*}=\sin{\theta^*}[/math]


Similarly,


[math]\frac{\partial(p\theta\phi)}{\partial(p\,\cos{\theta})}=\frac{1}{\sin{\theta}}[/math]


Using the conversion of cartesian to spherical coordinates we know:

[math]\begin{cases} p_x=p\sin{\theta}\cos{\phi} \\ p_y=p\sin{\theta}\sin{\phi} \\ p_z=p\cos{\theta} \end{cases}[/math]


and the fact that as was shown earlier, that


[math]\begin{cases} p^*_x=p_x \\ p^*_y=p_y \\ \phi^*=\phi \end{cases}[/math]


This allows us to express the term:

[math]\frac{\partial(p^*\theta^*\phi^*)}{\partial(p^*_xp^*_yp^*_z)}=\biggl[\frac{\partial(p^*_xp^*_yp^*_z)}{\partial(p^*\theta^*\phi^*)}\biggr]^{-1}=\biggl[\frac{\partial(p^*\sin{\theta^*}\cos{\phi^*}p^*\sin{\theta^*}\sin{\phi^*}p^*\cos{\theta^*})}{\partialp^*\partial\theta^*\partial\phi^*}\biggr]^{-1}[/math]


[math]\frac{\partial(p^*\theta^*\phi^*)}{\partial(p^*_xp^*_yp^*_z)}=\biggl[ \frac{\partialp^{*-1}\cos{\theta^{*}}^{-1}} {\partialp\,d\theta^*}\biggr]=\frac{1}{p^{*2}\sin{\theta^*}}[/math]


Again, similarly


[math]\frac{\partial(p_xp_yp_z)}{\partial(p\theta\phi)}=p^2\sin{\theta}[/math]


To find the middle component in the chain rule expansion,

[math]\left( \begin{matrix} E^* \\ p^*_x \\ p^*_y \\ p^*_z\end{matrix} \right)=\left(\begin{matrix}\gamma^* & 0 & 0 & -\beta^* \gamma^*\\0 & 1 & 0 & 0 \\ 0 & 0 & 1 &0 \\ -\beta^*\gamma^* & 0 & 0 & \gamma^* \end{matrix} \right) . \left( \begin{matrix}E\\ p_x \\ p_y\\ p_z\end{matrix} \right)[/math]

which gives,


[math]\Longrightarrow\begin{cases} E^*=\gamma^* E-\beta^* \gamma^* p_z \\ p^*_z=-\beta^* \gamma^*E+\gamma^* p_z \end{cases}[/math]


[math]\frac{\partial(p^*_xp^*_yp^*_z)}{\partial(p_xp_yp_z)}=\frac{\partialp^*_z}{\partialp_z}=\frac{\partial(-\beta^* \gamma^*E+\gamma^* p_z)}{\partialp_z}=-\beta^* \gamma^*\frac{\partialE}{\partialp_z}+\gamma^*[/math]