Difference between revisions of "Scattering Cross Section"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
=Scattering Cross Section=
 
=Scattering Cross Section=
  
<center><math>d\sigma = \frac{\left(\frac{number\ of\ particles\ scattered}{sec}\right) into\ d\Omega\ at\ \theta , \phi}{\frac{\frac{number\ of\ particles}{cm^2}}{sec} in\ incoming\ beam} = I(\theta,\phi)d\Omega</math></center>
+
<center><math>d\sigma = \frac{\left(\frac{number\ of\ particles\ scattered}{sec}\right) into\ d\Omega\ at\ \theta , \phi}{\left(\frac{\left(\frac{number\ of\ particles}{cm^2}}{sec}\right) in\ incoming\ beam}\right) = I(\theta,\phi)d\Omega</math></center>
  
  

Revision as of 18:46, 2 February 2016

Scattering Cross Section

d\sigma = \frac{\left(\frac{number\ of\ particles\ scattered}{sec}\right) into\ d\Omega\ at\ \theta , \phi}{\left(\frac{\left(\frac{number\ of\ particles}{cm^2}}{sec}\right) in\ incoming\ beam}\right) = I(\theta,\phi)d\Omega


dσ=number of particles scattered into dΩ at θ,ϕnumber of particles /cm2 in incoming beam=I(θ,ϕ)dΩ


dσ=dNL


where dσdΩdifferential scattering cross section


and σ=πθ=02πϕ=0(dσdΩ) dΩtotal scattering cross section


and dΩ=sinθdθdϕ

Transforming Cross Section Between Frames

Transforming the cross section between two different frames of reference has the condition that the quantity must be equal in both frames.


σCM=σLab

This is a Lorentz invariant.


dσ=Ilab(θlab, ϕlab)dΩlab=ICM(θCM, ϕCM)dΩCM

Since the number of particles per second going into the detector is the same for both frames. (Only the z component of the momentum and the Energy are Lorentz transformed)


This is that the number of particles going into the solid-angle element d\Omega and having a moentum between p and p+dp be the same as the number going into the correspoiding solid-angle element d\Omega^* and having a corresponding momentum between p^* and p*+dp*


(Epxpypz)=(γ00βγ01000010βγ00γ).(E1+E2p1(x)+p2(x)p1(y)+p2(y)p1(z)+p2(z))