Difference between revisions of "DV Calculations of 4-momentum components"

From New IAC Wiki
Jump to navigation Jump to search
Line 73: Line 73:
  
 
<center><math>s={\mathbf P}^2=(E_{1}+E_{2})^2-(\vec p_{1}+\vec p_{2})^2=(m_{1}+m_{2})^2</math></center>
 
<center><math>s={\mathbf P}^2=(E_{1}+E_{2})^2-(\vec p_{1}+\vec p_{2})^2=(m_{1}+m_{2})^2</math></center>
 +
  
 
<center><math>\Longrightarrow (m_{1}^*+m_{2}^*)^2=(m_{1}+m_{2})^2</math></center>
 
<center><math>\Longrightarrow (m_{1}^*+m_{2}^*)^2=(m_{1}+m_{2})^2</math></center>

Revision as of 22:57, 2 January 2016

Calculations of 4-momentum components

Initial Conditions

Lab Frame

Lab.png
Figure 1: Definition of variables in the Lab Frame


Begining with the assumption that the incoming electron, p1, has momentum of 11000 MeV in the positive z direction.


p1(z)p1=11000MeVˆz


We can also assume the Moller electron, p2, is initially at rest


p20


This gives the total energy in this frame as


Ep2+m2


E(p1+p2)2+(m1+m2)2


E(11000MeV)2+(.511MeV+.511MeV)211000MeV

Center of Mass Frame

CM.png
Figure 2: Definition of variables in the Center of Mass Frame


Starting with the definition for the total relativistic energy:


E2p2c2+m2c4


E2c2p2=m2c2


We can use 4-momenta vectors, i.e. P(E/cpxpypz) , to describe the variables in the CM Frame.

Using this notation, the sum of two 4-momenta forms a 4-vector as well

P1+P2=(E1+E2p1c+p2c)=P


We can perform a Lorentz transformation to the Center of Mass frame, with zero total momentum


(E1+E2000)=(γ00βγ01000010βγ00γ).(E1+E200p1(z)+p2(z))

Without knowing the values for gamma or beta, we can show that lengths of the two 4-momenta are invariant

s=P2=(E1+E2)2(p 1+p 2)2=(m1+m2)2


s=P2=(E1+E2)2(p1+p2)2=(m1+m2)2


(m1+m2)2=(m1+m2)2


Using the fact that

{m1=m2m1=m2


(m1+m1)2=(m1+m1)2


2m1=2m1


m1=m1


m1=m1 ;m2=m2


and using the fact that the scalar product of a 4-momenta with itself,


P1P1=E1E1p1p1c2=m21c4=s


is invariant


The length of this four-vector is an invariant as well

P2=(P1+P2)2=(E1+E2)2(p1c+p2c)2=(m1c4+m2c4)2=s



P2=(P1+P2)2=(E1+E2)2(p1+p2)2=s
(with c=1)


For incoming electrons moving only in the z-direction, we can write


P1+P2=(E1+E200p1(z)+p2(z))=P




Setting these equal to each other, we can use this for the collision of two particles of mass m1 and m2. Since the total momentum is zero in the Center of Mass frame, we can express total energy in the center of mass frame as

(E1+E2)2(p 1+p 2)2=s=(E1+E2)2(p1+p2)2


(E)2(p )2=(E1+E2)2(p1+p2)2


(E)2=(E1+E2)2(p1+p2)2


E=[(E1+E2)2(p1+p2)2]1/2


E=[E21+2E1E2+E22p1.p2p1.p1p2.p1p2.p2]1/2


E=[(E21p21)+(E22p22)+2E1E2p1.p2p2.p1]1/2


E=[(E21p21)+(E22p22)+2E1E2p1p2cos(θ)p2p1cos(θ)]1/2


E=[m21+m22+2E1E2p1p2cos(θ)p2p1cos(θ)]1/2


E=[m21+m22+2E1E22p1p2cos(θ)]1/2


E=[m21+m22+2E1E22p1p2cos(θ)]1/2


Using the relations βp/Ep=βE


E=[m21+m22+2E1E2(1β1β2cos(θ))]1/2


where θ is the angle between the particles in the Lab frame.



In the frame where one particle (m2) is at rest


β2=0


p2=0


which implies,


E2=[p22+m22]1/2=m2



E=(m21+m22+2E1m2)1/2=(.511MeV2+.511MeV2+2((11000MeV)2+(.511MeV)2)(.511MeV))1/2106.030760886MeV

where E1=p21+m2111000MeV


Inspecting the Lorentz transformation to the Center of Mass frame:


(E1+E2000)=(γ00βγ01000010βγ00γ).(E1+E200p1(z)+p2(z))


For the case of a stationary electron, this simplifies to:

(Epxpypz)=(γ00βγ01000010βγ00γ).(E1+m200p1(z)+0)


which gives,


{E=γ(E1+m2)βγp1(z)pz=βγ(E1+m2)+γp1(z)


Solving for β, with pz=0

βγ(E1+m2)=γp1(z)


β=p1(E1+m2)


Similarly, solving for γ by substituting in β


E=γ(E1+m2)p1(E1+m2)γp1(z)


E=γ(E1+m2)2(E1+m2)γ(p1(z))2(E1+m2)


Using the fact that E=[(E1+E2)2(p1+p2)2]1/2


E=γE 2(E1+m2)
γ=(E1+m2)E



Using the relation

(E1+E2p1(x)+p2(x)p1(y)+p2(y)p1(z)+p2(z))=(γ00βγ01000010βγ00γ).(E1+m200p1(z)+0)


(E2p2(x)p2(y)p2(z))=(γ00βγ01000010βγ00γ).(m000)


{E2=γ(m2)p2(z)=βγ(m2)


{E2=(E1+m2)E(m2)p2(z)=p1(E1+m2)(E1+m2)E(m2)


{E2=(11000MeV+.511MeV)106.031MeV(.511MeV)53.0129177MeVp2(z)=11000MeV106.031MeV(.511MeV)53.013MeV


(E1p1(x)p1(y)p1(z))=(γ00βγ01000010βγ00γ).(E100p1(z))


{E1=γ(E1)βγp1(z)p1(z)=βγ(E1)+γp1(z)


{E1=(E1+m2)E(E1)p1(z)(E1+m2)(E1+m2)Ep1(z)p1(z)=p1(E1+m2)(E1+m2)E(E1)+(E1+m2)Ep1(z)


{E1=(11000MeV+.511MeV)106.031MeV(11000MeV)11000MeV106.031MeV11000MeV53.013MeVp1(z)=11000MeV106.031MeV(11000MeV)+(11000MeV+.511MeV)106.031MeV11000MeV53.013MeV


p1=(p1(x))2+(p1(y))2+(p1(z))2p1=p1(z)


p2=(p2(x))2+(p2(y))2+(p2(z))2p2=p2(z)


This gives the momenta of the particles in the center of mass to have equal magnitude, but opposite directions.

p1=p253.013MeV



E1=E253.013MeV

Final Conditions

Moller electron Lab Frame

Finding the correct kinematic values starting from knowing the momentum of the Moller electron, p^'_{2} , in the Lab frame,

Xz lab.png
Figure 3: Definition of Moller electron variables in the Lab Frame in the x-z plane.
Using \theta '_2=\arccos \left(\frac{p^'_{2(z)}}{p^'_{2}}\right)


\Longrightarrow {p^'_{2(z)}=p^'_{2}\cos(\theta '_2)}

^'


Checking on the sign resulting from the cosine function, we are limited to:

0θ2600θ21.046 Radians

Since,

\frac{p^'_{2(z)}}{p^'_{2}}=cos(\theta '_2)


\Longrightarrow p^'_{2(z)}\ should\ always\ be\ positive
Xy lab.png
Figure 4: Definition of Moller electron variables in the Lab Frame in the x-y plane.
Similarly, \phi '_2=\arccos \left( \frac{p^'_{2(x) Lab}}{p^'_{2(xy)}} \right)


where p_{2(xy)}^'=\sqrt{(p_{2(x)}^')^2+(p^'_{2(y)})^2}


(p^'_{2(xy)})^2=(p^'_{2(x)})^2+(p^'_{2(y)})^2


and using p2=p2(x)+p2(y)+p2(z)


this gives (p^'_{2})^2=(p^'_{2(xy)})^2+(p^'_{2(z)})^2


(p2)2(p2(z))2=(p2(xy))2


\Longrightarrow p_{2(xy)}^'=\sqrt{(p^'_{2})^2-(p^'_{2(z)})^2}


which givesϕ2=arccos(p2(x)p 22p 22(z))
p2(x)=p 22p 22(z)cos(ϕ)


Similarly, using p22=p22(x)+p22(y)+p22(z)


p 22p 22(x)p 22(z)=p 22(y)
p2(y)=p 22p 22(x)p 22(z)


Checking on the sign from the cosine results for ϕ2

πϕ2π Radians


For 0ϕ2π2 Radians
x=POSITIVE
y=NEGATIVE
For 0ϕ2π2 Radians
x=POSITIVE
y=POSITIVE
For π2ϕ2π Radians
x=NEGATIVE
y=NEGATIVE
For π2ϕ2π Radians
x=NEGATIVE
y=POSITIVE

Moller electron Center of Mass Frame

Relativistically, the x and y components remain the same in the conversion from the Lab frame to the Center of Mass frame, since the direction of motion is only in the z direction.


p2(x)p2(x)


p2(y)p2(y)


p2(z)=(p2)2(p2(x))2(p2(y))2



E2=≈53.013MeV

Electron Center of Mass Frame

Relativistically, the x, y, and z components have the same magnitude, but opposite direction, in the conversion from the Moller electron's Center of Mass frame to the electron's Center of Mass frame.


p2(x)=p1(x)


p2(y)=p1(y)


p2(z)=p1(z)

where previously it was shown

p153.013MeV



E153.013MeV

Electron Lab Frame

We can perform a Lorentz transformation from the Center of Mass frame, with zero total momentum, to the Lab frame.


(E1+E2p1(x)+p2(x)p1(y)+p2(y)p1(z)+p2(z))=(γ00βγ01000010βγ00γ).(E1+E2p1(x)+p2(x)p(1(y)+p2(y)p1(z)+p2(z))


p1(x)=p1(x)


p1(y)=p1(y)


{E=γE+βγpzpz=βγE+γpz


{γ=EEβ=pzE



Without knowing the values for gamma or beta, we can use the fact that lengths of the two 4-momenta are invariant

s=P2=(E1+E2)2(p 1+p 2)2


s=P2=(E1+E2)2(p 1+p 2)2


Setting these equal to each other, we can use this for the collision of two particles of mass m1 and m2. Since the total momentum is zero in the Center of Mass frame, we can express total energy in the center of mass frame as

(E1+E2)2(p 1+p 2)2=s=(E1+E2)2(p 1+p 2)2


(E)2(p )2=(E1+E2)2(p )2


(E)2=(E)2(p )2


(E)2+(p)2=(E)2


E=(E)2+(p )2

Since momentum is conserved, the initial momentum from the incident electron and stationary electron is still the same in the Lab frame, therefore p Lab=11000MeV


E=(106.031MeV)2+(11000MeV)211000.511MeV


This is the same as the initial total energy in the Lab frame, which should be expected since scattering is considered to be an elastic collision.


Since,

EE1+E2


E1=EE2

Using the relation

E2p2+m2


p 21=E 21m21=E 21(.511MeV)2


Using

p2p2x+p2y+p2z


p1(z)=p 21p 21(x)p 21(y)


DV_RunGroupC_Moller#Momentum distributions in the Center of Mass Frame

DV_MollerTrackRecon#Calculations_of_4-momentum_components