Difference between revisions of "DV Calculations of 4-momentum components"

From New IAC Wiki
Jump to navigation Jump to search
Line 76: Line 76:
  
  
<center><math>\left( \begin{matrix}E_{1 CM}+E_{2 CM}\\ 0 \\ 0 \\ 0\end{matrix} \right)=\left(γCM00βCMγCM01000010βCMγCM00γCM \right) . \left( E1Lab+E2Lab00p1zLab+p2zLab \right)</math></center>
+
<center><math>\left( \begin{matrix}E^*_{1}+E^*_{2}\\ 0 \\ 0 \\ 0\end{matrix} \right)=\left(γCM00βCMγCM01000010βCMγCM00γCM \right) . \left( E1Lab+E2Lab00p1zLab+p2zLab \right)</math></center>
  
  

Revision as of 02:49, 31 December 2015

Calculations of 4-momentum components

Initial Lab Frame

Assume the incoming electron has momentum of 11000 MeV in the positive z direction.

p1 zp1=11000MeV

The moller electron is initially at rest

p20

The total energy in this frame

Ep2+m2


E(p1+p2)2+(m1+m2)2


E(11000MeV)2+(.511MeV+.511MeV)211000MeV

Center of Mass Frame

Using the definition


E2p2c2+m2c4


p2=E2c2m2c2


We can use 4-momenta vectors, i.e. P(E/cpxpypz)


we can use the fact that the scalar product of a 4-momenta with itself,


P1P1=E1E1p1p1c2=m21c4=s


is invariant

Using this, the sum of two 4-momenta forms a 4-vector as well

P1+P2=(E1+E2p1c+p2c)=P


The length of this four-vector is an invariant as well

P2=(P1+P2)2=(E1+E2)2(p1c+p2c)2=(m1c4+m2c4)2=s



P2=(P1+P2)2=(E1+E2)2(p1+p2)2=s
(with c=1)


For incoming electrons moving only in the z-direction, we can write


P1+P2=(E1+E200p1z+p2z)=P


We can perform a Lorentz transformation to the Center of Mass frame, with zero total momentum


(E1+E2000)=(γCM00βCMγCM01000010βCMγCM00γCM).(E1Lab+E2Lab00p1zLab+p2zLab)


Without knowing the values for gamma or beta, we can use the fact that lengths of the two 4-momenta are invariant

s=P2CM=(E1CM+E2CM)2(p1CM+p2CM)2


s=P2Lab=(E1Lab+E2Lab)2(p1Lab+p2Lab)2


m1Lab=m1CM ;m2Lab=m2CM


Setting these equal to each other, we can use this for the collision of two particles of mass m1 and m2. Since the total momentum is zero in the Center of Mass frame, we can express total energy in the center of mass frame as

(E1CM+E2CM)2(p1CM+p2CM)2=s=(E1Lab+E2Lab)2(p1Lab+p2Lab)2


(ECM)2(pCM)2=(E1Lab+E2Lab)2(p1Lab+p2Lab)2


(ECM)2=(E1Lab+E2Lab)2(p1Lab+p2Lab)2


ECM=[(E1Lab+E2Lab)2(p1Lab+p2Lab)2]1/2


ECM=[E21Lab+2E1LabE2Lab+E22Labp1Lab.p2Labp1Lab.p1Labp2Lab.p1Labp2Lab.p2Lab]1/2


ECM=[(E21Labp21Lab)+(E22Labp22Lab)+2E1LabE2Labp1Lab.p2Labp2Lab.p1Lab]1/2


ECM=[(E21Labp21Lab)+(E22Labp22Lab)+2E1LabE2Labp1Labp2Labcos(θLab)p2Labp1Labcos(θLab)]1/2


ECM=[m21Lab+m22Lab+2E1LabE2Labp1Labp2Labcos(θLab)p2Labp1Labcos(θLab)]1/2


ECM=[m21Lab+m22Lab+2E1LabE2Lab2p1Labp2Labcos(θLab)]1/2


ECM=[m21Lab+m22Lab+2E1LabE2Lab2p1Labp2Labcos(θLab)]1/2


Using the relations βp/EpLab=βLabELab


ECM=[m21Lab+m22Lab+2E1LabELab2(1β1Labβ2Labcos(θLab))]1/2


where θLab is the angle between the particles in the Lab frame.


ECM=[m21+m22+2E1LabE2Lab(1β1Labβ2Labcos(θLab))]1/2


In the frame where one particle (m2 Lab) is at rest


β2Lab=0


p2Lab=0


which implies,


E2Lab=[p22Lab+m22Lab]1/2=m2Lab



ECM=(m21Lab+m22Lab+2E1Labm2Lab)1/2=(.511MeV2+.511MeV2+2((11000MeV)2+(.511MeV)2)(.511MeV))1/2106.030760886MeV

where E1Lab=p21Lab+m21Lab11000MeV


Inspecting the Lorentz transformation to the Center of Mass frame:


(E1CM+E2CM000)=(γCM00βCMγCM01000010βCMγCM00γCM).(E1Lab+E2Lab00p1zLab+p2zLab)


For the case of a stationary electron, this simplifies to:

(ECMpxCMpyCMpzCM)=(γCM00βCMγ01000010βCMγCM00γCM).(E1Lab+m2Lab00p1zLab+0)


which gives,


{ECM=γCM(E1Lab+m2Lab)βCMγCMp1zLabpzCM=βCMγCM(E1Lab+m2Lab)+γCMp1zLab


Solving for βCM, with pzCM=0

βCMγCM(E1Lab+m2Lab)=γCMp1zLab


βCM=p1Lab(E1Lab+m2Lab)


Similarly, solving for γCM by substituting in βCM


ECM=γCM(E1Lab+m2Lab)p1Lab(E1Lab+m2Lab)γCMp1zLab


ECM=γCM(E1Lab+m2)2(E1Lab+m2Lab)γCM(p1zLab)2(E1Lab+m2Lab)


Using the fact that ECM=[(E1Lab+E2Lab)2(p1Lab+p2Lab)2]1/2


ECM=γCME2CM(E1Lab+m2Lab)
γCM=(E1Lab+m2Lab)ECM


This gives the momenta of the particles in the center of mass to have equal magnitude, but opposite directions


Using the relation

(E1CM+E2CMp1xCM+p2xCMp1yCM+p2yCMp1zCM+p2zCM)=(γCM00βCMγCM01000010βCMγCM00γCM).(E1Lab+m2Lab00p1zLab+0)


(E2CMp2xCMp2yCMp2zCM)=(γCM00βCMγCM01000010βCMγCM00γCM).(m000)


{E2CM=γCM(m2lab)p2zCM=βCMγCM(m2Lab)


{E2CM=(E1Lab+m2Lab)ECM(m2)p2zCM=p1Lab(E1Lab+m2)(E1Lab+m2Lab)ECM(m2Lab)


{E2CM=(11000MeV+.511MeV)106.031MeV(.511MeV)53.0129177MeVp2zCM=11000MeV106.031MeV(.511MeV)53.013MeV


(E1CMp1xCMp1yCMp1zCM)=(γCM00βCMγCM01000010βCMγCM00γCM).(E1Lab00p1zLab)


{E1CM=γCM(E1Lab)βCMγCMp1zLabp1zCM=βCMγ(E1Lab)+γCMp1zLab


{E1CM=(E1Lab+m2Lab)ECM(E1Lab)p1zLab(E1Lab+m2)(E1Lab+m2Lab)ECMp1zLabp1zCM=p1Lab(E1Lab+m2)(E1Lab+m2Lab)ECM(E1Lab)+(E1Lab+m2Lab)ECMp1zLab


{E1CM=(11000MeV+.511MeV)106.031MeV(11000MeV)11000MeV106.031MeV11000MeV53.013MeVp1zCM=11000MeV106.031MeV(11000MeV)+(11000MeV+.511MeV)106.031MeV11000MeV53.013MeV


p1CM=p21xCM+p21yCM+p21zCMp1CM=p1zCM


p2CM=p22xCM+p22yCM+p22zCMp2CM=p2zCM


p1CM=p2CM53.013MeV



E1CM=E2CM53.013MeV

Moller electron Lab Frame

Finding the correct kinematic values starting from knowing the momentum of the Moller electron, , in the Lab frame,

Xz (m)LAB.png
Using



Checking on the sign resulting from the cosine function, we are limited to:

Since,


Xy Lab.png
Similarly,


where



and using


this gives




which gives


Similarly, using



Checking on the sign from the cosine results for


x=POSITIVE
y=NEGATIVE
x=POSITIVE
y=POSITIVE
x=NEGATIVE
y=NEGATIVE
x=NEGATIVE
y=POSITIVE

Moller electron Center of Mass Frame

Relativistically, the x and y components remain the same in the conversion from the Lab frame to the Center of Mass frame, since the direction of motion is only in the z direction.






Electron Center of Mass Frame

Relativistically, the x, y, and z components have the same magnitude, but opposite direction, in the conversion from the Moller electron's Center of Mass frame to the electron's Center of Mass frame.




where previously it was shown



Electron Lab Frame

We can perform a Lorentz transformation from the Center of Mass frame, with zero total momentum, to the Lab frame.








Without knowing the values for gamma or beta, we can use the fact that lengths of the two 4-momenta are invariant



Setting these equal to each other, we can use this for the collision of two particles of mass m1 and m2. Since the total momentum is zero in the Center of Mass frame, we can express total energy in the center of mass frame as





Since momentum is conserved, the initial momentum from the incident electron and stationary electron is still the same in the Lab frame, therefore



This is the same as the initial total energy in the Lab frame, which should be expected since scattering is considered to be an elastic collision.


Since,


Using the relation



Using



DV_RunGroupC_Moller#Momentum distributions in the Center of Mass Frame

DV_MollerTrackRecon#Calculations_of_4-momentum_components