Difference between revisions of "Niowave Report 11-30-2015"

From New IAC Wiki
Jump to navigation Jump to search
Line 6: Line 6:
  
 
==Beam Pipe heating==
 
==Beam Pipe heating==
 +
 +
 +
 +
The energy deposited by electrons scattered into a 3.48 diameter stainless steel beam pipe (1.65 mm thick)  from a PbBi target as a function of a uniform Solenoidal magnetic field.
 +
 +
The histogram is binned in 100 (10 cm) bin widths.  The surface area becomes <math>10 cm \times 2 \pi 3.48/2 = 109.33 cm^2</math>
 +
 +
 +
To convert From Mev/ e- to kW/cm^2 assuming a current of 1mA (10^-3 C/s) you 
 +
 +
<math>\left( \frac{\mbox{MeV}}{\mbox{cm}^2 \mbox{e}^-}\right) \times \left( \frac{ \mbox{e}^-}{1.6 \times 10^{-19}\mbox{C}}  \right ) \times \left( \frac{1 \times 10^{-3} \mbox{C}}{\mbox{s}} \right )  \times \left( \frac{1.6 \times 10^{-13}\mbox{W} \cdot \mbox{ s}}{\mbox{MeV} }\right )</math>
 +
 +
<math>\left( \frac{\mbox{keV}}{\mbox{cm}^2 \mbox{e}^-}\right) = \left( \frac{\mbox{W} }{\mbox{cm}^2 } \right )</math>
 +
 +
 +
 +
{| border="1"
 +
{| border="1"
 +
| B-field (Tesla) || Hot Spot (<math>MeV/e^-</math>)
 +
|-
 +
| 0.0  || 0.35
 +
|-
 +
|  0.3    ||  0.35
 +
|-
 +
|  1.0  || 0.35
 +
|-
 +
|  1.5  || 0.22
 +
|-
 +
|  2.0  || 0.10
 +
|-
 +
|  4.0  || 0.002
 +
|+
 +
|}
 +
 +
 +
{| border="1"
 +
| [[File:BeamPipeDepEmev-vs-B.png |200px]] || [[File:BeamPipeDepPower-vs-B.png |200px]] 
 +
|+ Energy deposited (MeV) along a 1 m long beam pipe of stainless steel 1.65 mm thick.
 +
|}
  
 
=Solenoid Descritpion=
 
=Solenoid Descritpion=

Revision as of 00:10, 28 November 2015

Target optimization

Optimal Thickness

Optimal Solenoidal Field

Beam Pipe heating

The energy deposited by electrons scattered into a 3.48 diameter stainless steel beam pipe (1.65 mm thick) from a PbBi target as a function of a uniform Solenoidal magnetic field.

The histogram is binned in 100 (10 cm) bin widths. The surface area becomes [math]10 cm \times 2 \pi 3.48/2 = 109.33 cm^2[/math]


To convert From Mev/ e- to kW/cm^2 assuming a current of 1mA (10^-3 C/s) you

[math]\left( \frac{\mbox{MeV}}{\mbox{cm}^2 \mbox{e}^-}\right) \times \left( \frac{ \mbox{e}^-}{1.6 \times 10^{-19}\mbox{C}} \right ) \times \left( \frac{1 \times 10^{-3} \mbox{C}}{\mbox{s}} \right ) \times \left( \frac{1.6 \times 10^{-13}\mbox{W} \cdot \mbox{ s}}{\mbox{MeV} }\right )[/math]

[math]\left( \frac{\mbox{keV}}{\mbox{cm}^2 \mbox{e}^-}\right) = \left( \frac{\mbox{W} }{\mbox{cm}^2 } \right )[/math]


B-field (Tesla) Hot Spot ([math]MeV/e^-[/math])
0.0 0.35
0.3 0.35
1.0 0.35
1.5 0.22
2.0 0.10
4.0 0.002


BeamPipeDepEmev-vs-B.png BeamPipeDepPower-vs-B.png
Energy deposited (MeV) along a 1 m long beam pipe of stainless steel 1.65 mm thick.

Solenoid Descritpion

A 10 MeV electron beam with a radius of 0.5 cm was incident on a 2 mm thick PbBi target. The target is positioned at Z = -901 mm.


TF Niowave SolenoidDesign 9-11-15.png


G4Beamline_PbBi#Reports