Difference between revisions of "HEDP notes"
Jump to navigation
Jump to search
Line 9: | Line 9: | ||
<math>B[G] = 0.2 \times I(A) / r(cm) </math> | <math>B[G] = 0.2 \times I(A) / r(cm) </math> | ||
<math>B[T] = 0.2 \times I(kA) / r(mm) </math> | <math>B[T] = 0.2 \times I(kA) / r(mm) </math> | ||
− | |||
*100 kA at 1 mm radius is 20 T | *100 kA at 1 mm radius is 20 T | ||
Line 21: | Line 20: | ||
<math> P_m(bar) = (2 \times B(T))^2 </math> | <math> P_m(bar) = (2 \times B(T))^2 </math> | ||
<math> P_m(bar) = 0.16 \times I(kA)^2 \times R(mm)^{-2} </math> | <math> P_m(bar) = 0.16 \times I(kA)^2 \times R(mm)^{-2} </math> | ||
− | |||
*100 kA at 1 mm radius is 1.6 kBar | *100 kA at 1 mm radius is 1.6 kBar |
Revision as of 20:59, 25 September 2015
high energy density plasma defined as a plasma with pressure above 1 MBar
magnetic field produced by single wire (Ampere law / Biot-Savart Law)
- 100 kA at 1 mm radius is 20 T
- 10 MA at 4 mm radius is 500 T
- 100 kA at 1 um radius is 20 kT
magnetic pressure
- 100 kA at 1 mm radius is 1.6 kBar
- 10 MA at 4 mm radius is 1 MBar
- 100 kA at 1 um radius is 1.6 GBar
Bennett condition
- magnetic pressure = plasmakinetic pressure
- so our plasma pressure (at 100 kA at 1 um radius) is about 1,600 MBar (wau!! really??!!)