Difference between revisions of "HEDP notes"
Jump to navigation
Jump to search
Line 7: | Line 7: | ||
=magnetic field produced by single wire (Ampere law / Biot-Savart Law)= | =magnetic field produced by single wire (Ampere law / Biot-Savart Law)= | ||
<math>B[G] = \frac{I[A]}{5r[cm]}</math> | <math>B[G] = \frac{I[A]}{5r[cm]}</math> | ||
+ | |||
+ | 10 MA at 4 mm radius is 5 x 10^6 G | ||
100 kA at 1 um radius is 200 MG | 100 kA at 1 um radius is 200 MG | ||
Line 13: | Line 15: | ||
=magnetic pressure= | =magnetic pressure= | ||
<math> P_{magnetic}[bar] = (2 \times B[T])^2 \sim I^2 \times R^{-2} </math> | <math> P_{magnetic}[bar] = (2 \times B[T])^2 \sim I^2 \times R^{-2} </math> | ||
+ | |||
<math> 5 \times 10^6 G \Rightarrow 1 MBar </math> | <math> 5 \times 10^6 G \Rightarrow 1 MBar </math> | ||
+ | |||
<math> 200 \times 10^6 G \Rightarrow 1,600 MBar </math> | <math> 200 \times 10^6 G \Rightarrow 1,600 MBar </math> | ||
Revision as of 19:52, 25 September 2015
high energy density plasma pressure
magnetic field produced by single wire (Ampere law / Biot-Savart Law)
10 MA at 4 mm radius is 5 x 10^6 G
100 kA at 1 um radius is 200 MG
magnetic pressure
Bennett condition
- magnetic pressure = plasmakinetic pressure
- so our plasma pressure (at 100 kA at 1 um radius) is about 1,600 MBar (wau!! really??!!)