Difference between revisions of "HEDP notes"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
| Line 1: | Line 1: | ||
[https://wiki.iac.isu.edu/index.php/RS#Pulsed-power_applications_.282-LTD-driver_and_more.29 go back]  | [https://wiki.iac.isu.edu/index.php/RS#Pulsed-power_applications_.282-LTD-driver_and_more.29 go back]  | ||
| − | + | =high energy density plasma pressure=  | |
<math>1 MBar = 1 \times 10^6 \times 10^5 Pa = 10^{11} Pa = 10^{11} (N m)/(m^2) = 10^{11} J/m = 10^{11} (10^7 erg)/(10^6 cm^3) = 10^{12} erg/cm^3</math>  | <math>1 MBar = 1 \times 10^6 \times 10^5 Pa = 10^{11} Pa = 10^{11} (N m)/(m^2) = 10^{11} J/m = 10^{11} (10^7 erg)/(10^6 cm^3) = 10^{12} erg/cm^3</math>  | ||
| − | + | =magnetic field produced by single wire (Ampere law / Biot-Savart Law)=  | |
<math>B[G] = \frac{I[A]}{5r[cm]}</math>  | <math>B[G] = \frac{I[A]}{5r[cm]}</math>  | ||
| Line 13: | Line 13: | ||
| − | + | =magnetic pressure=  | |
<math> P_{magnetic}[bar] = (2 \times B[T])^2 \sim I^2 \times R^{-2} </math>  | <math> P_{magnetic}[bar] = (2 \times B[T])^2 \sim I^2 \times R^{-2} </math>  | ||
| Line 21: | Line 21: | ||
<math> 200 \times 10^6 G \Rightarrow 1,600 MBar </math>    | <math> 200 \times 10^6 G \Rightarrow 1,600 MBar </math>    | ||
| − | |||
| − | + | =Bennett condition=  | |
| − | ** so our plasma pressure (at 100 kA at 1 um radius) is about 1,600 MBar (wau!! really??!!)  | + | *  magnetic pressure = plasmakinetic pressure  | 
| + | |||
| + | * so our plasma pressure (at 100 kA at 1 um radius) is about 1,600 MBar (wau!! really??!!)  | ||
Revision as of 19:50, 25 September 2015
high energy density plasma pressure
magnetic field produced by single wire (Ampere law / Biot-Savart Law)
100 kA at 1 um radius is 200 MG
magnetic pressure
Bennett condition
- magnetic pressure = plasmakinetic pressure
 
- so our plasma pressure (at 100 kA at 1 um radius) is about 1,600 MBar (wau!! really??!!)