Difference between revisions of "HEDP notes"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
[https://wiki.iac.isu.edu/index.php/RS#Pulsed-power_applications_.282-LTD-driver_and_more.29 go back] | [https://wiki.iac.isu.edu/index.php/RS#Pulsed-power_applications_.282-LTD-driver_and_more.29 go back] | ||
− | + | =high energy density plasma pressure= | |
<math>1 MBar = 1 \times 10^6 \times 10^5 Pa = 10^{11} Pa = 10^{11} (N m)/(m^2) = 10^{11} J/m = 10^{11} (10^7 erg)/(10^6 cm^3) = 10^{12} erg/cm^3</math> | <math>1 MBar = 1 \times 10^6 \times 10^5 Pa = 10^{11} Pa = 10^{11} (N m)/(m^2) = 10^{11} J/m = 10^{11} (10^7 erg)/(10^6 cm^3) = 10^{12} erg/cm^3</math> | ||
− | + | =magnetic field produced by single wire (Ampere law / Biot-Savart Law)= | |
<math>B[G] = \frac{I[A]}{5r[cm]}</math> | <math>B[G] = \frac{I[A]}{5r[cm]}</math> | ||
Line 13: | Line 13: | ||
− | + | =magnetic pressure= | |
<math> P_{magnetic}[bar] = (2 \times B[T])^2 \sim I^2 \times R^{-2} </math> | <math> P_{magnetic}[bar] = (2 \times B[T])^2 \sim I^2 \times R^{-2} </math> | ||
Line 21: | Line 21: | ||
<math> 200 \times 10^6 G \Rightarrow 1,600 MBar </math> | <math> 200 \times 10^6 G \Rightarrow 1,600 MBar </math> | ||
− | |||
− | + | =Bennett condition= | |
− | ** so our plasma pressure (at 100 kA at 1 um radius) is about 1,600 MBar (wau!! really??!!) | + | * magnetic pressure = plasmakinetic pressure |
+ | |||
+ | * so our plasma pressure (at 100 kA at 1 um radius) is about 1,600 MBar (wau!! really??!!) |
Revision as of 19:50, 25 September 2015
high energy density plasma pressure
magnetic field produced by single wire (Ampere law / Biot-Savart Law)
100 kA at 1 um radius is 200 MG
magnetic pressure
Bennett condition
- magnetic pressure = plasmakinetic pressure
- so our plasma pressure (at 100 kA at 1 um radius) is about 1,600 MBar (wau!! really??!!)