|
|
Line 58: |
Line 58: |
| | | |
| :<math>S = \int_{x_1,y_1}^x ds</math> | | :<math>S = \int_{x_1,y_1}^x ds</math> |
− | :<math>S = \int_{x_1,y_1}^(x_2,y_2} ds= \int_{x_1,y_1}^(x_2,y_2} \sqrt{dx^2+dy^2}</math> | + | :<math>S = \int_{x_1,y_1}^{x_2,y_2} ds= \int_{x_1,y_1}^(x_2,y_2} \sqrt{dx^2+dy^2}</math> |
− | ::<math> = \int_{x_1,y_1}^(x_2,y_2} \sqrt{dx^2+\left ( y^{\prime}(x) dx\right)^2}</math> | + | ::<math> = \int_{x_1,y_1}^{x_2,y_2} \sqrt{dx^2+\left ( y^{\prime}(x) dx\right)^2}</math> |
− | ::<math> = \int_{x_1,y_1}^(x_2,y_2} \sqrt{1+y^{\prime}(x)^2}dx</math> | + | ::<math> = \int_{x_1,y_1}^{x_2,y_2} \sqrt{1+y^{\prime}(x)^2}dx</math> |
| | | |
| | | |
Revision as of 12:25, 13 October 2014
Calculus of Variations
Fermat's Principle
Fermats principle is that light takes a path between two points that requires the least amount of time.
If we let S represent the path of light between two points then
- [math]S=vt[/math]
light takes the time [math]t[/math] to travel between two points can be expressed as
- [math]t = \int_A^B dt =\int_A^B \frac{1}{v} ds [/math]
The index of refraction is denoted as
- [math]n=\frac{c}{v}[/math]
- [math]t = \int_A^B \frac{n}{c} ds [/math]
for light traversing an interface with an nindex of refraction $n_1$ on one side and $n_2$ on the other side we would hav e
- [math]t = \int_A^I \frac{n_1}{c} ds+ \int_I^B \frac{n_2}{c} ds [/math]
- [math]= \frac{n_1}{c}\int_A^I ds+ \frac{n_2}{c} \int_I^B ds [/math]
- [math]= \frac{n_1}{c}\sqrt{h_1^2 + x^2}+ \frac{n_2}{c} \sqrt{h_2^2 + (\ell -x)^2} [/math]
take derivative of time with respect to [math]x[/math] to find a minimum for the time of flight
- [math] \frac{d t}{dx} = 0[/math]
- [math] \Rightarrow 0 = \frac{d}{dx} \left ( \frac{n_1}{c}\left ( h_1^2 + x^2 \right )^{\frac{1}{2}}+ \frac{n_2}{c} \left (h_2^2 + (\ell -x)^2 \right)^{\frac{1}{2}} \right )[/math]
- [math] = \frac{n_1}{c}\left( h_1^2 + x^2 \right )^{\frac{-1}{2}} (2x) + \frac{n_2}{c} \left (h_2^2 + (\ell -x)^2 \right)^{\frac{-1}{2}} 2(\ell -x)(-1)[/math]
- [math] = \frac{n_1}{c}\frac{x}{\sqrt{ h_1^2 + x^2 }} + \frac{n_2}{c} \frac{(\ell -x)(-1)}{\sqrt{h_2^2 + (\ell -x)^2}} [/math]
- [math] = n_1\frac{x}{\sqrt{ h_1^2 + x^2 }} - n_2 \frac{\ell -x}{\sqrt{h_2^2 + (\ell -x)^2}} [/math]
- [math] \Rightarrow n_1\frac{x}{\sqrt{ h_1^2 + x^2 }} = n_2 \frac{\ell -x}{\sqrt{h_2^2 + (\ell -x)^2}} [/math]
or
- [math] \Rightarrow n_1\sin(\theta_1) = n_2 \sin(\theta_2) [/math]
Generalizing Fermat's principle to determining the shorest path
One can apply Fermat's principle to show that the shortest path between two points is a straight line.
In 2-D one can write the differential path length as
- [math]ds=\sqrt{dx^2+dy^2}[/math]
using chain rule
- [math]dy = \frac{dy}{dx} dx \equiv y^{\prime}(x) dx[/math]
the the path length between two points [math](x_1,y_1)[/math] and [math](x_2,y_2)[/math] is
- [math]S = \int_{x_1,y_1}^x ds[/math]
- [math]S = \int_{x_1,y_1}^{x_2,y_2} ds= \int_{x_1,y_1}^(x_2,y_2} \sqrt{dx^2+dy^2}[/math]
- [math] = \int_{x_1,y_1}^{x_2,y_2} \sqrt{dx^2+\left ( y^{\prime}(x) dx\right)^2}[/math]
- [math] = \int_{x_1,y_1}^{x_2,y_2} \sqrt{1+y^{\prime}(x)^2}dx[/math]
http://scipp.ucsc.edu/~haber/ph5B/fermat09.pdf
Euler-Lagrange Equation
https://www.fields.utoronto.ca/programs/scientific/12-13/Marsden/FieldsSS2-FinalSlidesJuly2012.pdf
Forest_Ugrad_ClassicalMechanics