Difference between revisions of "Forest UCM CoV"
Jump to navigation
Jump to search
Line 35: | Line 35: | ||
:<math> \Rightarrow 0 = \frac{d}{dx} \left ( \frac{n_1}{c}\left ( h_1^2 + x^2 \right )^{\frac{1}{2}}+ \frac{n_2}{c} \left (h_2^2 + (\ell -x)^2 \right)^{\frac{1}{2}} \right )</math> | :<math> \Rightarrow 0 = \frac{d}{dx} \left ( \frac{n_1}{c}\left ( h_1^2 + x^2 \right )^{\frac{1}{2}}+ \frac{n_2}{c} \left (h_2^2 + (\ell -x)^2 \right)^{\frac{1}{2}} \right )</math> | ||
::<math> = \frac{n_1}{c}\left( h_1^2 + x^2 \right )^{\frac{-1}{2}} (2x) + \frac{n_2}{c} \left (h_2^2 + (\ell -x)^2 \right)^{\frac{-1}{2}} 2(\ell -x)(-1)</math> | ::<math> = \frac{n_1}{c}\left( h_1^2 + x^2 \right )^{\frac{-1}{2}} (2x) + \frac{n_2}{c} \left (h_2^2 + (\ell -x)^2 \right)^{\frac{-1}{2}} 2(\ell -x)(-1)</math> | ||
− | ::<math> = \frac{n_1}{c}\frac{2x}{\sqrt{ h_1^2 + x^2 }} + \frac{n_2}{c} \frac{(\ell -x)(-1) | + | ::<math> = \frac{n_1}{c}\frac{2x}{\sqrt{ h_1^2 + x^2 }} + \frac{n_2}{c} \frac{(\ell -x)(-1)}{\sqrt{{h_2^2 + (\ell -x)^2} </math> |
http://scipp.ucsc.edu/~haber/ph5B/fermat09.pdf | http://scipp.ucsc.edu/~haber/ph5B/fermat09.pdf |
Revision as of 12:05, 13 October 2014
Calculus of Variations
Fermat's Principle
Fermats principle is thatlight takes a path between two points that requires the least amount of time.
If we let S represent the path of light between two points then
light takes the time
to travel between two points can be expressed as
The index of refraction is denoted as
for light traversing an interface with an nindex of refraction $n_1$ on one side and $n_2$ on the other side we would hav e
take derivative of time with respect to
to find a minimum for the time of flighthttp://scipp.ucsc.edu/~haber/ph5B/fermat09.pdf
Euler-Lagrange Equation
https://www.fields.utoronto.ca/programs/scientific/12-13/Marsden/FieldsSS2-FinalSlidesJuly2012.pdf